Sitoskeleton

Revisi sejak 20 Juni 2012 04.48 oleh TuHan-Bot (bicara | kontrib) (r2.6.5) (bot Menambah: vi:Bộ xương tế bào)

Sitoskeleton atau kerangka sel adalah jaring berkas-berkas protein yang menyusun sitoplasma dalam sel. Setelah lama dianggap hanya terdapat di sel eukariota, sitoskeleton ternyata juga dapat ditemukan pada sel prokariota. Dengan adanya sitoskeleton, sel dapat memiliki bentuk yang kokoh, berubah bentuk, mampu mengatur posisi organel, berenang, serta merayap di permukaan.[1]

Sitoskeleton eukariota. Aktin digambarkan dengan warna merah dan mikrotubulus dengan warna hijau. Struktur berwarna biru ialah inti sel.

Sitoskeleton eukariota

Sitoskeleton eukariota terdiri dari tiga tipe dasar, yaitu mikrofilamen, mikrotubulus (jamak: mikrotubuli), dan intermediat filamen. Ketiga filamen ini terhubung satu sama lain dan saling berkoordinasi.

Ciri-ciri berbagai jenis sitoskeleton eukariota[2]
Mikrotubulus Filamen intermediat Mikrofilamen
Struktur Tabung berongga yang kaku dan tidak dapat diregangkan Filamen liat yang fleksibel dan dapat diregangkan Filamen fleksibel yang tidak dapat diregangkan
Diameter 25 nm 10–12 nm 8 nm
Subunit Tubulin, dimer dari α-tubulin dan β-tubulin ~70 jenis protein Aktin
Fungsi utama Pendukung, transpor intraselular, organisasi sel Pendukung Motilitas dan kontraksi
Ditemukan pada Semua eukariota Hewan Semua eukariota
Lokasi selular Sitoplasma Sitoplasma dan nukleus Sitoplasma
Foto
 
Mikrotubula di dalam sel
 
Filamen keratin sel karsinoma
 
Mikrofilamen sel mencit
Skema struktur
 
 
 

Mikrofilamen (Filamen aktin)

Bersifat fleksibel, filamen aktin biasanya berbentuk jaring atau gel. Aktin berfungsi membentuk permukaan sel. Beberapa jenis bakteri juga mampu bergerak dengan filamen aktin seperti Listriea monocytogenes yang menyebar dari sel ke sel dengan menginduksi penyusunan filamen aktin pada sitosol sel inang.[1]

Mikrotubula atau mikrotubulus adalah tabung yang disusun dari mikrotubulin. bersifat lebih kokoh dari aktin, mikrotubulus mengatur posisi organel di dalam sel. Mikrotubulus memiliki dua ujung: ujung negatif yang terhubung dengan pusat pengatur mikrotubulus, dan ujung positif yang berada di dekat membran plasma. Organel dapat meluncur di sepanjang mikrotubulus untuk mencapai posisi yang berbeda di dalam sel, terutama saat pembelahan sel.[1]

Polimerisasi tubulin

Tubulin dapat berpolimerisasi membentuk mikrotubulus. Percobaan polimerisasi dapat dibuat dengan campuran tubulin, larutan penyangga, dan GTP pada suhu 37 °C. Dalam tahapannya, jumlah polimer mikrotubulus mengikuti kurva sigmoid. Pada fase lag, tiap molekul tubulin berasosiasi untuk membentuk agregat yang agak stabil. Beberapa di antaranya berlanjut membentuk mikrotubulus. Saat elongasi, tiap subunit berikatan dengan ujung ujung mikrotubulus. Saat fase plato, (mirip fase log pada pembelahan sel), polimerisasi dan depolimerisasi berlangsung secara seimbang karena jumlah tubulin bebas yang ada pas-pasan.

Berbentuk serat mirip tali, filamen intermediet memberi kekuatan mekanis pada sel sehingga sel tahan terhadap tekanan dan peregangan yang terjadi pada dinding sel. Filamen ini juga memberi kekuatan pada dinding sel.[1]

Pembentukan filamen intermediet

Pembentukan filamen intermediet juga didasarkan pada polimerisasi filamen. Dua monomer filamen bergabung membentuk struktur coil. Dimer ini akan bergabung dengan dimer lainnya membentuk tetramer, tetapi posisinya saling tidak paralel. Ketidakparalelan ini membuat tetramer dapat berasosiasi dengan tetramer lain (mirip struktur penyusunan batu bata). Pada akhirnya, tetramer-tetramer bergabung membentuk sebuah array heliks.[1]

Struktur bentukan sitoskeleton

Hanya dengan tiga tipe filamen, struktur sel dapat bervariasi antara satu sel dengan sel lainnya. Efektivitas kerja ketiga filamen protein ini bergantung pada jumlah protein asesori yang menghubungkan filamen ke komponen sel lain. Protein asesori penting untuk mengontrol perakitan filamen sitoskeleton pada posisi tertentu, termasuk di dalamnya protein motorik yang mengerakkan organel pada filamen atau filamen itu sendiri. Susunan struktur filamen ini mirip barisan semut. Tersusun rapih dan jika ada yang meninggalkan rombongan, barisan dapat menyusun kembali dalam kecepatan tinggi.[1]

Silia adalah benang tipis setebal 0,25 μm dengan bundel mikrotubulus di bagian intinya. Dinding dari silia adalah 9 pasang mikrotubulus dan bagian tengah dari benang ini adalah 2 mikrotubulus yang tidak berpasangan, yang biasa disebut axoneme. Struktur ini sering disebut sebagai "Struktur 9+2". Silia berfungsi menggerakkan fluida di permukaan sel dan menggerakkan sel di dalam fluida.[1]

Sentriol adalah struktur berbentuk tabung yang terbentuk dari mikrotubulus dengan lebar 0,2 μm dan panjangnya 0,4 μm. Sentriol berfungsi membentuk benang spindel untuk memisahkan kromosom. Mikrotubulus berkelompok membentuk 3 mikrotubulus yang tersusun secara paralel. Sembilan kelompok semacam ini membentuk dinding sentriol. Tiap kelompok tidak tegak lurus dengan inti tabung, tetapi agak miring.[1]

Dinding sel tanaman adalah matriks ekstraseluler yang kokoh. Dinding sel ini terdiri atas mikrofibrilis dalam banyak matriks polisakarida (sebagian besar pektin dan hemiselusosa) dan glikoprotein yang saling silang. Pada bagian korteks dari dinding sel, ada array mikrotubulus yang menentukan posisi mikrofibrilis. Penyusunan mikrofibrilis ini menentukan arah perkembangan dinding sel, bentuk akhir sel, serta pola pembelahan sel. Dalam susunannya pada dinding sel, mikrofibrilis selulosa saling silang dalam jaringan yang diikat oleh hemiselusosa. Jaringan ini saling ekstensif dengan jaringan polisakarida pektin. Jaringan selulosa-hemiselulosa memberi kekuatan tegangan sementara jaringan pektin melawan kompresi. Pada dinding sel utama, jumlah ketiganya secara kasar sama, tetapi lamela tengah memiliki lebih banyak pektin untuk merekatkan sel yang berdekatan.[1]

Sitoskeleton prokariota


Referensi

  1. ^ a b c d e f g h i Alberts B, et.al.. 2002. Molecular Biology of the Cell. Ney York:Garland Science ISBN 0-8153-3218-1
  2. ^ (Inggris) Karp, G. (2009). Cell and Molecular Biology: Concepts and Experiments (edisi ke-6). Hoboken, NJ: John Wiley and Sons. hlm. 319.  (lihat di Penelusuran Buku Google)

Lihat pula