Perkalian
Perkalian adalah operasi matematika penskalaan satu bilangan dengan bilangan lain. Operasi ini adalah salah satu dari empat operasi dasar di dalam aritmetika dasar (yang lainnya adalah perjumlahan, perkurangan, dan perbagian).
Perkalian terdefinisi untuk seluruh bilangan di dalam suku-suku perjumlahan yang diulang-ulang; misalnya, 3 dikali 4 (seringkali dibaca "3 kali 4") dapat dihitung dengan menjumlahkan 3 salinan dari 4 bersama-sama:
Perkalian bilangan rasional (pecahan) dan bilangan real didefinisi oleh perumumam gagasan dasar ini.
Perkalian dapat juga digambarkan sebagai pencacahan objek yang disusun di dalam persegi panjang (untuk semua bilangan) atau seperti halnya penentuan luas persegi panjang yang sisi-sisinya memberikan panjang (untuk bilangan secara umum). Balikan dari perkalian adalah perbagian: ketika 3 kali 4 sama dengan 12, maka 12 dibagi 3 sama dengan 4.
Perkalian diperumum ke jenis bilangan lain (misalnya bilangan kompleks) dan ke konstruksi yang lebih abstrak seperti matriks.
Catatan
Matematika merupakan ilmu dasar yang mendasari semua penerapan dalam kehidupan nyata. Contoh penerapan nyata adalah dalam bidang medis. Ketika kita mendapatkan obat dari dokter 3x1 berarti 3 kali dalam sehari (pagi, siang, malam) masing-masing 1 (pil). Bukan sebaliknya, 1 kali dalam sehari 3 (pil).
Hal ini perlu diperhatikan karena prosesnya sangat berbeda antara 3x2 dan 2x3. Seringkali kita berfokus pada hasilnya yang sama-sama 6. Penjelasan dalam bidang medis akan sangat jelas: 3x2 berarti 3 kali dalam sehari masing-masing 2 (pil) sedangkan 2x3 berarti 2 kali dalam sehari masing-masing 3 (pil).654 Dengan demikian, penjabaran dalam penjumlahan : 3x2 = 2 + 2 + 2; sedangkan 2x3 = 3 + 3.
Penekanan proses ini merupakan kewajiban bagi pengajar dan penulis buku tentang perkalian. Proses ini akan konsisten untuk diterapkan dalam bidang selain medis. Contohnya dalam ekonomi, 4 anak membeli 1 buku @ Rp. 1.000. Penulisan dalam bentuk perkalian adalah : 4 x Rp. 1.000. Penulisan dalam bentuk penjumlahan adalah : Rp. 1.000 + Rp. 1.000 + Rp. 1.000 + Rp. 1.000.
Referensi
- Boyer, Carl B. (revised by Merzbach, Uta C.) (1991). History of Mathematics. John Wiley and Sons, Inc. ISBN 0-471-54397-7.