Analisis struktur

bio Baho
Revisi sejak 16 Juni 2013 13.52 oleh Sarwo90 (bicara | kontrib) (Sarwo90 memindahkan halaman Analisis struktural ke Analisis struktur: Sudah kesepakatan di Indonesia disebut Analisis Struktur. Semua buku dan mata kuliah menyebut nama itu.)

Analisis struktural merupakan ilmu untuk menentukan efek dari beban pada struktur fisik dan komponennya. Adapun cabang pemakaiannya meliputi analisis bangunan, jembatan, perkakas, mesin, tanah, dll. Analisis struktur menggabungkan bidang mekanika terapan, teknik material dan matematika terapan untuk menghitung deformasi struktur, kekuatan internal, tekanan, reaksi tumpuan, percepatan, dan stabilitas. Hasil analisis tersebut digunakan untuk memverifikasi kekuatan struktur yang akan maupun telah dibangun. Dengan demikian analisis struktural merupakan bagian penting dari desain rekayasa struktur.

Sejarah

 
Tulisan Galileo Gallilei mengenai lentur balok kantilever

Sejarah analisis struktur lahir dari ilmu mekanika yang merupakan cabang dari fisika. Tulisan tertua yang berisi ilmu ini dibuat oleh Archimedes (287-212 SM) yang membahas prinsip pengungkit dan prinsip kemampuan mengapung. Kemajuan yang besar diawali oleh hukum kombinasi vektor gaya oleh Stevinus (1548-1620), yang juga merumuskan sebagian besar dari prinsip-prinsip statika. Penyelidikan tentang lentur pertama kali dilakukan Galileo Galilei (1564-1642) namun baru dipecahkan dengan baik oelh Auguste Coloumb (1736-1806). Robert Hooke (1635 - 1703) menemukan kelakuan material yang dikenal dengan hukum Hooke sebagai dasar dari ilmu elastisitas. Metode kerja maya dikembangkan awalnya oleh Leibnitz untuk menyelesaikan masalah mekanika biasa. Selanjutnya pendekatan ini benar-benar sangat berguna dan penggunaannya diperluas dalam berbagai kasus. Berbeda dengan ilmuwan lain yang menekankan persamaan analitik, Christian Otto Mohr (1835–1918) mengembangkan metode grafis yang antara lain lingkaran Mohr (untuk menentukan tegangan), dan diagram Williot-Mohr (untuk menentukan perpindahan truss). Tokoh lain yang terlibat dalam perkembangan ilmu analisis struktur awal diantaranya, Marotte, D'Alembert, Euler (teori balok dan tekuk), Navier, Bernoulli (teori balok), Maxwell (Prinsip Maxwell), Betti (hukum Betti), St. Venant (torsi), Rayleigh, dan Castigliano (teori defleksi). Teori balok Euler-Bernoulli dibuktikan kebenarannya dengan diselesaikannya pembangunan Menara Eiffel di Paris. Sebelumnya teori itu hanya dibahas oleh para ilmuwan semata.

Di abad modern, perkembangan besar ilmu bahan dilakukan oleh ilmuwan Rusia-AS Stephen P. Timoshenko. Maha karyanya Strenght of Material merupakan buku wajib mahasiswa teknik sipil hampir diseluruh dunia. Penemuan penting lain adalah metode distribusi momen oleh Hardy Cross pada tahun 1930 dalam tulisannya di jurnal ASCE. Kontribusi lain Cross adalah metode analogi kolom. Namun metode klasik yang mulai digantikan seiring dengan berkembangnya kemampuan dan kecepatan komputer. Maka dari itu penggunaan metode elemen hingga semakin meluas oleh insinyur struktur. Analisis yang sebelumnya memakan banyak kertas dengan ketelitian semakin berkurang dengan banyaknya variabel berhasil diatasi. Metode ini pertama kali dipakai dalam menganalisis gedung Opera Sydney oleh firma konsultan kenamaan Ove Arup. Bisa dikatakan metode elemen hingga merupakan penemuan terpenting dalam bidang analisis struktur.

Struktur dan beban

Klasifikasi struktur

Sebuah sistem struktur merupakan gabungan antara elemen struktur dengan bahannya. Sangat penting bagi insinyur untuk mengklasifikasi struktur baik bentuk maupun fungsi dengan mengenali berbagai elemen yang menyusun struktur tersebut. Elemen struktur tak semata balok, kolom dan tiang penopang tetapi juga kabel, busur, terowongan, struktur permukaan, maupun portal.

Elemen lentur: Balok sederhana

 
Lentur balok

Sebuah balok langsing yang diberi perletakan sederhana makan lentur. Sebutan masalaha lentur diartikan pada studi mengenai tegangan dan deformasi yang timbul pada elemen yang mengalami aksi gaya. Umumnya tegaklurus pada sumbu elemen sehingga salah satu tepi serat mengalamai perpanjangan dan tepi serat lainnya mengalami perpendekan. Persamaan klasik untuk menentukan tegangan lentur pada balok dengan perletakan sederhana adalah :[1]

 

dimana

  •   adalah tegangan lentur
  • M - momen pada sumbu netral
  • y - jarak tegak lurus sumbu netral ke tepi
  • Ix - momen inersia luasan pada sumbu netral x.

Elemen tekan: Kolom

Selain dinding pemikul beban, kolom juga merupakan elemen vertikal yang sangat banyak digunakan. Umumnya kolom tidak mengalami lentur secara langsung dikarenakan tidak ada beban tegak lurus pada sumbunya. Kolom dikategorikan bedasarkan panjangnya. Kolom pendek adalah kolom yang kegagalannya berupa kegagalan material (ditentukan oleh kekuatan material). Kolom panjang adalah kolom yang kegagalannya ditentukan oleh tekuk, jadi kegagalannya adalah kegagalan karena ketidakstabilan, bukan karena kekuatan. [2]

Pelat

Plat adalah struktur palanar kaku yang secara khas terbuat dari material monolit yang tingginya yang kecil dibandingkan dengan dimensi lainnya. Umumnya dapat dikatakan bahwa pelat yang terbuat dari material homogen mempunyai sifat yang sama pada segala arah.

Cangkang

Cangkang adalah bentuk struktural berdimensi tiga yang kaku dan tipis serta mempunyai permukaan yang lengkung. Beban-beban yang bekerja pada permukaan cangkang diteruskan ke tanah dengan menimbulkan tegangan geser, tarik, dan tekan pada arah dalam bidang (in-plane) permukaan tersebut.

Beban

 
Jembatan tipe Warren Truss di Leupung, Aceh. Disini beban mati adalah berat rangka baja dan perkerasan jalan. Sedang beban hidupnya adalah beban kendaraan, angin, dan gempa.

Setelah dimensi dari struktur itu diketahui, sangat penting kemudian menentukan beban apa saja yang ditanggung dari struktur. Beban disain biasanya dispesifikasi oleh peraturan bangunan yang berlaku. Untuk wilayah hukum Indonesia digunakan SNI 1727 1989 Perencanaan Pembebanan Untuk Rumah dan Gedung. Ada dua jenis beban pada struktur yang harus dipertimbangkan dalam desain. Tipe pertama ini disebut dengan Beban mati yang merupakan berat dari kumpulan setiap anggota struktur maupun berat objek benda yang ditempatkan secara permanen. Sebagai contoh, kolom, balok, balok penopang (girder), pelat lantai, dinding, jendela, plumbing, alat listrik, dan lain sebagainya. Kedua adalah Beban hidup, yang mana beban yang bergerak atau bervariasi dalam ukuran maupun lokasi. Contohnya adalah beban kendaraan pada jembatan, beban pengunjung pada gedung, beban hujan, beban salju, beban ledakan, beban gempa, dan beban alami lainnya.

Stabilitas struktur

Pada struktur stabil, deformasi yang diakibatkan beban pada umumnya kecil dan gaya dakhil (internal) yang timbul dalam struktur mempunyai kecenderugan mengembalikan bentuk semula apabila bebannya dihilangkan. Pada struktur tidak stabil, deformasi yang diakibatkan oleh beban pada umumnya mempunyai kecenderungan untuk terus bertambah selama struktur dibebani. Struktur yang tidak stabil mudah mengalami keruntuhan secara menyeluruh dan seketika begitu dibebani. Sebagai contoh, bayangkan tiga buah balok disusun membentuk rangka segiempat. Berikan gaya horizontal diujung rangka atas balok tersebut. Maka lama kelamaan rangka itu rubuh. Salah satu cara untuk membuatnya lebih stabil dengan bracing atau mengisinya dengan dinding. Selain dengan yang disebutkan tadi, ketidakstabilitas struktur bisa diakibatkan juga oleh kelemahan kolom yang diakibatkan tekuk maupun efek P-Delta.

Metode analisis

Untuk bisa menghasilkan analisis yang akurat, insinyur struktur harus memperoleh informasi mengenai beban struktur, geometri, kondisi tumpuan, dan sifat bahan. Hasil dari analisis biasanya berupa reaksi tumpuan, tegangan, geser, momen, puntir, dan perpindahan. Informasi ini kemudian dibandingkan dengan kriteria kondisi kegagalan. Analisa struktur lanjutan menyertakan respon dinamika, stabilitas dan perilaku non-linier. Ada tiga pendekatan analisi yang umum: Pendekatan mekanika bahan (juga dikenal dengan kekuatan bahan), pendekatan teori elastisitas, dan pendekatan elemen hingga. Yang pertama dan kedua menggunakan persamaan analitik yang digunakan untuk kebanyakan model elastis-linier sederhana. Sedangkan metode elemen hingga, merupakan metode analisis numerik untuk memecahkan masalah persamaan diferensial pada teori struktur. Metode ini sangat bergantung pada kemampuan komputer dan lebih aplikatif dalam analisis bangunan yang beragam dan komplek.

Sumber

  1. ^ Gere, J. M. and Timoshenko, S.P., 1997, Mechanics of Materials, PWS Publishing Company.
  2. ^ Schodek, Daniel L., 1999, Sruktur, Erlangga.