Bilangan riil

kuantitas sejalan dengan garis kontinyu

Dalam matematika, bilangan riil atau bilangan real menyatakan bilangan yang bisa dituliskan dalam bentuk desimal, seperti 2,4871773339… atau 3.25678. Bilangan real meliputi bilangan rasional, seperti 42 dan −23/129, dan bilangan irasional, seperti π dan . Bilangan rasional direpresentasikan dalam bentuk desimal berakhir, sedangkan bilangan irasional memiliki representasi desimal tidak berakhir namun berulang. Bilangan riil juga dapat direpresentasikan sebagai salah satu titik dalam garis bilangan.[1]

Simbol yang sering digunakan untuk menyatakan himpunan bilangan riil

Definisi popular dari bilangan real meliputi klas ekivalen dari deret Cauchy rasional, irisan Dedekind, dan deret Archimides.

Bilangan riil ini berbeda dengan bilangan kompleks yang termasuk di dalamnya adalah bilangan imajiner.

Bilangan riil dapat digambarkan sebagai titik-titik pada garis bilangan yang panjangnya takhingga

Sifat-sifat

Aksioma medan

Bilangan riil, beserta operasi penjumlahan dan perkalian, memenuhi aksioma berikut.[1][2]. Misalkan x,y dan z merupakan anggota himpunan bilangan riil R, dan operasi x+y merupakan penjumlahan, serta xy merupakan perkalian. Maka:

  • Aksioma 1 (hukum komutatif): x+y = y+x, dan xy = yx
  • Aksioma 2 (hukum asosiatif): x+(y+z) = (x+y)+z dan x(yz) = (xy)z
  • Aksioma 3 (hukum distributif): x(y+z) = (xy + xz)
  • Aksioma 4: Eksistensi unsur identitas. Terdapat dua bilangan riil berbeda, yang dilambangkan sebagai 0 dan 1, sehingga untuk setiap bilangan riil x kita mendapatkan 0+x=x dan 1.x=x.
  • Aksioma 5: Eksistensi negatif, atau invers terhadap penjumlahan. Untuk setiap bilangan riil x, terdapat bilangan riil y sehingga x+y=0. Kita dapat juga melambangkan y sebagai -x.
  • Aksioma 6: Eksistensi resiprokal, atau invers terhadap perkalian. Untuk setiap bilangan riil x tidak sama dengan 0, terdapat bilangan riil y sehingga xy=1. Kita dapat melambangkan y sebagai 1/x.

Himpunan yang memenuhi sifat-sifat ini disebut sebagai medan, dan karena itu aksioma di atas dinamakan sebagai aksioma medan. asdasd

Aksioma urutan

Kita akan mengasumsikan terdapat himpunan R+, yang disebut sebagai bilangan positif yang merupakan himpunan bagian dari R. Misalkan juga x dan y adalah anggota R+. Himpunan bagian ini memenuhi aksioma urutan berikut ini:[2]

  • Aksioma 7: x+y dan xy merupakan anggota R+
  • Aksioma 8: Untuk setiap x yang tidak sama dengan 0, x anggota R+ atau -x anggota R+, tapi tidak mungkin keduanya sekaligus
  • Aksioma 9: 0 bukan anggota R+.

Aksioma kelengkapan

  • Aksioma 10: Setiap himpunan bilangan riil S yang memiliki batas atas memiliki supremum, yakni ada suatu bilangan riil B sehingga B=sup(S).

Lihat pula

Catatan kaki

  1. ^ a b Wrede, Robert (2007). "Bilangan". Schaum Outlines:Teori dan Soal-Soal Kalkulus Lanjut. Penerbit Erlangga. hlm. 1–2. 
  2. ^ a b Apostol, Tom (1967). Calculus Vol. 1 (edisi ke-2). John Wiley and Sons, Inc. hlm. 17–19. 

Pranala luar


Templat:Link FA Templat:Link GA