Himpunan (matematika)

konsep matematika dasar yang berhubungan dengan nosi kepemilikan atau inklusi

Dalam matematika, himpunan adalah segala koleksi benda-benda tertentu yang dianggap sebagai satu kesatuan. Walaupun ini merupakan ide yang sederhana, himpunan tidak pelak merupakan salah satu konsep penting dan mendasar dalam matematika modern, dan karenanya, studi struktur kemungkinan himpunan, teori himpunan, sangat luas.

Teori himpunan, yang baru diciptakan pada akhir abad ke-19, sekarang merupakan bagian yang tersebar dalam pendidikan matematika yang mulai diperkenalkan bahkan sejak tingkat sekolah dasar. Teori ini merupakan bahasa untuk menjelaskan matematika modern. Teori himpunan dapat dianggap sebagai dasar yang membangun hampir semua aspek dari matematika dan merupakan sumber dari mana semua matematika diturunkan.

Notasi Himpunan

Biasanya, nama himpunan ditulis menggunakan huruf besar, misalnya S, A, atau B, sementara elemen himpunan ditulis menggunakan huruf kecil (a, c, z). Cara penulisan ini adalah yang umum dipakai, tetapi tidak membatasi bahwa setiap himpunan harus ditulis dengan cara seperti itu. Tabel di bawah ini menunjukkan format penulisan himpunan yang umum dipakai.

Notasi Contoh
Himpunan Huruf besar  
Elemen himpunan Huruf kecil (jika merupakan huruf)  
Kelas Huruf tulisan tangan  

Himpunan-himpunan bilangan yang cukup dikenal, seperti bilangan kompleks, riil, bulat, dan sebagainya, menggunakan notasi yang khusus.

Bilangan Notasi
Asli  
Bulat  
Rasional  
Riil  
Kompleks  

Simbol-simbol khusus yang dipakai dalam teori himpunan adalah:

Simbol Arti
  atau   Himpunan kosong
  Operasi gabungan dua himpunan
  Operasi irisan dua himpunan
 ,  ,  ,   Subhimpunan, Subhimpunan sejati, Superhimpunan, Superhimpunan sejati
  Komplemen
  Himpunan kuasa

Himpunan dapat didefinisikan dengan dua cara, yaitu:

  • Enumerasi, yaitu mendaftarkan semua anggota himpunan. Jika terlampau banyak tetapi mengikuti pola tertentu, dapat digunakan elipsis (...).
 
 
 
  • Pembangun himpunan, tidak dengan mendaftar, tetapi dengan mendeskripsikan sifat-sifat yang harus dipenuhi oleh setiap elemen himpuan tersebut.
 
 
 

Notasi pembangun himpunan dapat menimbulkan berbagai paradoks.

Kelas

Suatu himpunan disebut sebagai kelas, atau keluarga himpunan jika himpunan tersebut terdiri dari himpunan-himpunan. Himpunan   adalah sebuah keluarga himpunan. Perhatikan bahwa untuk sembarang himpunan A, maka himpunan kuasanya,   adalah sebuah keluarga himpunan.

Contoh berikut,   bukanlah sebuah kelas, karena mengandung elemen c yang bukan himpunan.

Kardinalitas

Kardinalitas dari sebuah himpunan dapat dimengerti sebagai ukuran banyaknya elemen yang dikandung oleh himpunan tersebut. Banyaknya elemen himpunan   adalah 4. Himpunan   juga memiliki elemen sejumlah 4. Berarti kedua himpunan tersebut ekivalen satu sama lain, atau dikatakan memiliki kardinalitas yang sama.

Dua buah himpunan A dan B memiliki kardinalitas yang sama, jika terdapat fungsi korespondensi satu-satu yang memetakan A pada B. Karena dengan mudah kita membuat fungsi   yang memetakan satu-satu dan kepada himpunan A ke B, maka kedua himpunan tersebut memiliki kardinalitas yang sama.

Himpunan Denumerabel

Jika sebuah himpunan ekivalen dengan himpunan  , yaitu himpunan bilangan asli, maka himpunan tersebut disebut denumerabel. Kardinalitas dari himpunan tersebut disebut sebagai kardinalitas  .

Himpunan semua bilangan genap positif merupakan himpunan denumerabel, karena memiliki korespondensi satu-satu antara himpunan tersebut dengan himpunan bilangan asli, yang dinyatakan oleh  .

 

Himpunan Berhingga

Jika sebuah himpunan memiliki kardinalitas yang kurang dari kardinalitas  , maka himpunan tersebut adalah himpunan berhingga.

Himpunan Tercacah

Himpunan disebut tercacah jika himpunan tersebut adalah berhingga atau denumerabel.

Himpunan Non-Denumerabel

Himpunan yang tidak tercacah disebut himpunan non-denumerabel. Contoh dari himpunan ini adalah himpunan semua bilangan riil. Kardinalitas dari himpunan jenis ini disebut sebagai kardinalitas  . Pembuktian bahwa bilangan riil tidak denumerabel dapat menggunakan pembuktian diagonal.

Himpunan bilangan riil dalam interval (0,1) juga memiliki kardinalitas  , karena terdapat korespondensi satu-satu dari himpunan tersebut dengan himpunan seluruh bilangan riil, yang salah satunya adalah  .

Fungsi Karakteristik

Fungsi karakteristik menunjukkan apakah sebuah elemen terdapat dalam sebuah himpunan atau tidak.

 

Jika   maka:

 
 
 
 
 

Terdapat korespondensi satu-satu antara himpunan kuasa   dengan himpunan dari semua fungsi karakteristik dari S. Hal ini mengakibatkan kita dapat menuliskan himpunan sebagai barisan bilangan 0 dan 1, yang menyatakan ada tidaknya sebuah elemen dalam himpunan tersebut.

Representasi Biner

Jika konteks pembicaraan adalah pada sebuah himpunan semesta S, maka setiap himpunan bagian dari S bisa dituliskan dalam barisan angka 0 dan 1, atau disebut juga bentuk biner. Bilangan biner menggunakan angka 1 dan 0 pada setiap digitnya. Setiap posisi bit dikaitkan dengan masing-masing elemen S, sehingga nilai 1 menunjukkan bahwa elemen tersebut ada, dan nilai 0 menunjukkan bahwa elemen tersebut tidak ada. Dengan kata lain, masing-masing bit merupakan fungsi karakteristik dari himpunan tersebut. Sebagai contoh, jika himpunan S = {a, b, c, d, e, f, g}, A = {a, c, e, f}, dan B = {b, c, d, f}, maka:

 Himpunan                            Representasi Biner
 ----------------------------        -------------------
                                     a b c d e f g
 S = { a, b, c, d, e, f, g }   -->   1 1 1 1 1 1 1
 A = { a,    c,    e, f    }   -->   1 0 1 0 1 1 0
 B = {    b, c, d,    f    }   -->   0 1 1 1 0 1 0

Cara menyatakan himpunan seperti ini sangat menguntungkan untuk melakukan operasi-operasi himpunan, seperti union, interseksi, dan komplemen, karena kita tinggal menggunakan operasi bit untuk melakukannya.

  • Operasi gabungan   setara dengan A or B
  • Operasi irisan   setara dengan A and B
  • Operasi komplemen   setara dengan not A

Representasi himpunan dalam bentuk biner dipakai oleh kompiler-kompiler Pascal dan juga Delphi.

Referensi

Bacaan lanjutan

  • Halmos, Paul R., Naive Set Theory, Princeton, N.J.: Van Nostrand (1960) ISBN 0-387-90092-6
  • Stoll, Robert R., Set Theory and Logic, Mineola, N.Y.: Dover Publications (1979) ISBN 0-486-63829-4