Kriptografi (atau kriptologi; dari bahasa Yunani κρυπτός kryptós, "tersembunyi, rahasia"; dan γράφειν graphein, "menulis", atau -λογία logi, "ilmu")[1] merupakan keahlian dan ilmu dari cara-cara untuk komunikasi aman pada kehadirannya di pihak ketiga.[2] Secara umum, kriptografi ialah mengenai mengkonstruksi dan menganalisis protokol komunikasi yang dapat memblokir lawan;[3] berbagai aspek dalam keamanan informasi seperti data rahasia, integritas data, autentikasi, dan non-repudansi[4] merupakan pusat dari kriptografi modern. Kriptografi modern terjadi karena terdapat titik temu antara disiplin ilmu matematika, ilmu komputer, dan teknik elektro. Aplikasi dari kriptografi termasuk ATM, password komputer, dan E-commerce.

Alat kriptografi Lorenz yang dipakai di Jerman saat perang dunia II

Kriptografi sebelum pada termodernisasi merupakan sinonim dari enkripisi, konversi dari kalimat-kalimat yang dapat dibaca menjadi kelihatan tidak masuk akal. Pembuat dari pesan enkripsi membagi teknik pemecahan sandi yang dibutuhkan untuk mengembalikan informasi asli jika hanya dengan penerima yang diinginkan, sehingga dapat mencegah orang yang tidak diinginkan melakukan hal yang sama. Sejak Perang Dunia I dan kedatangan komputer, metode yang digunakan untuk mengelola kriptologi telah meningkat secara komplek dan pengaplikasiannya telah tersebar luar.

Kriptografi modern sangat didasari pada teori matematis dan aplikasi komputer; algoritma kriptografi didesain pada asumsi ketahanan komputasional, membuat algoritma ini sangat sulit dipecahkan oleh musuh. Secara teoritis, sangat sulit memecahkan sistem kriptografi, namun tidak layak melakukannya dengan cara-cara praktis. Skema ini oleh karena itu disebut sangat aman secara komputasional; kemajuan teoritis dapat meningkatkan algoritma faktorisasi integer, dan meningkatkan teknologi komputasi yang membutuhkan solusi ini untuk diadaptasi terus-meneus. Terdapat skema keamanan informasi yang benar-benar tidak boleh dapat ditembuh bahkan dengan komputasi yang tak terbatas namun skema ini sangat sulit diimplementasikan.

Teknologi yang berhubungan dengan kriptologi memiliki banyak masalah legal. Di Inggris, penambahan Regulasi Penyelidikan Aksi Wewenang membutuhkan kriminal yang tertuduh harus menyerahkan kunci dekripsinya jika diminta oleh penegah hukum. Jika tidak pengguna akan menghadapi hukum pidana.[5] Electronic Frontier Foundation (EFF) terlibat dalam sebuah kasus di Amerika Serikat yang mempertanyakan jika seorang tersangka harus untuk menyerahkan kunci dekripsi mereka kepada pengak hukum merupakan inkonstitusionil. EFF memperdebatkan bahwa regulasi ini merupakan pelanggaran hak untuk tidak dipaksa mencurigai dirinya sendiri, seperti dalam Amandemen Kelima Konsitusi Amerika.[6]

Terminologi

Hingga zaman modern kriptografi mengacu hampir secara ekslusif pada enkripsi, yang merupakan proses mengkonversikan informasi biasa menjadi teks yang tak dapat dipahami (disebut chipertext).[7] Deskripsi merupakan kebalikan, dengan kata lain, memindahkan chipertext yang tidak dapat dibaca menjadi teks yang dapat dibaca. Cipher atau (cypher) merupakan sepasang algoritma yang menciptakan enkripsi dan membalikan dekripsi. Operasi yang lebih mendalam dari cipher diatur baik oleh algoritma dan pada setiap permintaan dekripsi dengan kunci. Kucin ini bersifat rahasia (yang biasanya diketahui hanya oleh orang yang berkomunikasi), dan biasanya terdiri dengan karakter string singkat, yang dibutuhkan untuk mendekripsi ciphertext. Sebelumnya dinamakan "kriptosistem" yang merupakan daftar teratur dari elemen-elemen teks terbatas, cipherteks terbatas, kunci terbatas, dan algoritma dekripsi dan enkripsi yang berkoresponden pada setiap kunci. Kunci sangat penting baik pada penggunaan secara teoritis maupun sebenarnya, di mana cipher tanpa kunci variabel dapat dengan mudah rusak dengan hanya pengetahuan yang digunakan dari cipher dan dengan kemungkinan tidak berguna (atau malam tidak produktif) untuk banyak tujuan. Secara historis, cipher sering digunakan secara langsung untuk enkripsi atau deskripsi tanpa prosedur tambahan seperti autentikasi atau pengecekan integritas.

Dalam penggunaan bahasa sehari-hari, istilah "sandi" sering digunakan untuk menunjukkan setiap metode enkripsi atau penyembunyian arti. Bagaimanapun, dalam kriptografi, sandi telah memiliki arti yang lebih spesifik. Itu berarti pemindahan unit teks (contoh kata atau frase yang berarti) dengan sebuah kata sandi (sebagai contoh, "wallaby" berarti "menyerang saat fajar"). Sandi tidak lagi digunakan pada kriptografi serius-kecuali sesekali untuk beberapa hal yang menyangkut istilah tertentu-sejak chiper yang dipilih secara tepat lebih praktis dan lebih aman daripada sandi terbaik dan juga dapat diadaptasikan pada komputer.

Kriptoanalsis merupakan istilah yang digunakan untuk mempelajari metode untuk memperoleh arti dari informasi enkripsi tanpa mengakses sandi secara normal yang dibutuhkan untuk melakukannya; sebagai contoh ilmu yang mempelajari cara untuk memecahkan algoritma enkripsi atau implementasinya.

Beberapa kegunaan dari istilah kriptografi dan kriptologi selalu berubah di Bahasa Inggris, sedang lainnya menggunakan kriptografi untuk merujuk secara spesifik pada penggunakan dan pengaplikasikan dari teknik kriptografi dan kriptologi untuk merujuk pada ilmu kombinasi dari kriptografi dan kriptoanalisis.[8][9] Bahasa Inggris lebih fleksibel dari istilah umum yang digunakan pada beberapa bahasa lain yang dimana kriptologi (dilakukan oleh kriptolog) selalu digunakan pada arti kedua di atas.

Ilmu karateristik dari bahasa yang memiliki aplikasi pada kriptografi[10] (atau kriptologi) (seperti data frekuensi, kombinasi surat, pola universal, dll.) disebuh kriptolinguistik.

Sejarah kriptografi dan kriptanalisis

Sebelum zaman modern, kriptografi dilihat hanya semata-mata berhubungan dengan pesan rahasia (seperti enkripsi)-konversi pesan dari bentuk dapat dipahami menjadi bentuk yang tak dapat dipahami dan kembali lagi satu dengan yang lain, menjadikannya tak dapat dibaca oleh pencegat atau penyadap tanpa ilmu khusus (di mana sandi dibutuhkan untuk dekripsi pesan itu). Enkripsi digunakan untuk menyakinkan kerahasiaan di komunikasi, termasuk teknik untuk pemeriksaan integritas pesan, autentikasi identitas pengirim/penerima, tanda-tangan digital, bukti interaktif dan komputasi keamanan, serta banyak lagi yang lain.

Kriptografi klasik

 
scytale Yunani yang direkonstruksi kembali, alat cipher pertama kali

Bentuk awal dari penulisan rahasia membutuhkan lebih sedikit dari implementasi penulisan sejak banyak orang tidak dapat membaca. lawan yang lebih terpelajar, membutuhkan kriptografi yang nyata. Tipe cipher klasik utama ialah cipher transposisi, di mana mengatur aturan huruf pada pesan (contoh 'hello world' menajdi 'ehlol owrdl' pada skema pengubahan sederhana ini), dan cipher subtitusi, di mana secara sistematis mengganti huruf atau grup kata dengan kata lainnya dari grup kata (contoh 'fly at once' menjadi 'gmz bu podf' dengan mengganti setiap huruf dengan yang lain di alfabet Latin. Substitusi cipher pada awalnya disebut cipher Caesar, di mana setiap kata pada teks diganti degan huruf dari jumlah tetap pada posisi di alfabet. Laporan Suetonius menyebutkan Julius Caesar mengunakannya untuk berkomunikasi dengan jendral-jendralnya. Atbash merupakan contoh dari cipher Ibrani pada mulanya. Penggunaan awal kriptografi yang diketahui merupakan cipherteks yang diukir pada batu di Mesir (1900 sebelum Masehi), namun cipherteks ini digunakan hanya sebagai hiburan untuk pengamat terpelajar dari pada cara untuk menyimpan informasi.

Yunani kuno menyebutkan telah mengetahui cipher (contoh cipher transposisi scytale yang diklaim telah digunakan oleh militer Sparta.[11] Steganografi (menyembunyikan kehadiran pesan sehingga pesan tersebut menjadi rahasia) juga pertama kali diperkenalkan pada masa kuno. Contoh awal seperti, dari Herodotus, menyembunyikan pesan - sebuah tato pada kepala budaknya - di bawah rambut yang kembali tumbuh.[7] COntoh yang lebih modern dari steganografi termasuk penggunaan tinta tak tampak, mikrodot, dan tanda air digital untuk menyembunyikan informasi.

Di India, Kamasutra dari Vātsyāyana yang berumur 2000 tahun berbicara dengan dua jenis cipher yang berbeda yang disebut Kautiliyam dan Mulavediya. Di Kautiliyam, substitusi kata cipher berdasarkan relasi fonetik, seperti vokal menjadi konsonan. Di Mulavediya, alfabet cipher terdiri dari kata-kata yang berpasangan dan bertimbal-balik.[7]

Algoritma Sandi

algoritma sandi adalah algoritma yang berfungsi untuk melakukan tujuan kriptografis. Algoritma tersebut harus memiliki kekuatan untuk melakukan (dikemukakan oleh Shannon):

  • konfusi/pembingungan (confusion), dari teks terang sehingga sulit untuk direkonstruksikan secara langsung tanpa menggunakan algoritma dekripsinya
  • difusi/peleburan (difusion), dari teks terang sehingga karakteristik dari teks terang tersebut hilang.

sehingga dapat digunakan untuk mengamankan informasi. Pada implementasinya sebuah algoritmas sandi harus memperhatikan kualitas layanan/Quality of Service atau QoS dari keseluruhan sistem dimana dia diimplementasikan. Algoritma sandi yang handal adalah algoritma sandi yang kekuatannya terletak pada kunci, bukan pada kerahasiaan algoritma itu sendiri. Teknik dan metode untuk menguji kehandalan algoritma sandi adalah kriptanalisa.

Dasar matematis yang mendasari proses enkripsi dan dekripsi adalah relasi antara dua himpunan yaitu yang berisi elemen teks terang / plaintext dan yang berisi elemen teks sandi/ciphertext. Enkripsi dan dekripsi merupakan fungsi transformasi antara himpunan-himpunan tersebut. Apabila elemen-elemen teks terang dinotasikan dengan P, elemen-elemen teks sandi dinotasikan dengan C, sedang untuk proses enkripsi dinotasikan dengan E, dekripsi dengan notasi D.

Enkripsi :  

Dekripsi :   atau  

Secara umum berdasarkan kesamaan kuncinya, algoritma sandi dibedakan menjadi :

  • kunci-simetris/symetric-key, sering disebut juga algoritma sandi konvensional karena umumnya diterapkan pada algoritma sandi klasik
  • kunci-asimetris/asymetric-key

Berdasarkan arah implementasi dan pembabakan jamannya dibedakan menjadi :

Berdasarkan kerahasiaan kuncinya dibedakan menjadi :

Pada skema kunci-simetris, digunakan sebuah kunci rahasia yang sama untuk melakukan proses enkripsi dan dekripsinya. Sedangkan pada sistem kunci-asimentris digunakan sepasang kunci yang berbeda, umumnya disebut kunci publik(public key) dan kunci pribadi (private key), digunakan untuk proses enkripsi dan proses dekripsinya. Bila elemen teks terang dienkripsi dengan menggunakan kunci pribadi maka elemen teks sandi yang dihasilkannya hanya bisa didekripsikan dengan menggunakan pasangan kunci pribadinya. Begitu juga sebaliknya, jika kunci pribadi digunakan untuk proses enkripsi maka proses dekripsi harus menggunakan kunci publik pasangannya.

algoritma sandi kunci-simetris

Skema algoritma sandi akan disebut kunci-simetris apabila untuk setiap proses enkripsi maupun dekripsi data secara keseluruhan digunakan kunci yang sama. Skema ini berdasarkan jumlah data per proses dan alur pengolahan data didalamnya dibedakan menjadi dua kelas, yaitu block-cipher dan stream-cipher.

Block-Cipher

Block-cipher adalah skema algoritma sandi yang akan membagi-bagi teks terang yang akan dikirimkan dengan ukuran tertentu (disebut blok) dengan panjang t, dan setiap blok dienkripsi dengan menggunakan kunci yang sama. Pada umumnya, block-cipher memproses teks terang dengan blok yang relatif panjang lebih dari 64 bit, untuk mempersulit penggunaan pola-pola serangan yang ada untuk membongkar kunci. Untuk menambah kehandalan model algoritma sandi ini, dikembangkan pula beberapa tipe proses enkripsi, yaitu :

Stream-Cipher

Stream-cipher adalah algoritma sandi yang mengenkripsi data persatuan data, seperti bit, byte, nible atau per lima bit(saat data yang di enkripsi berupa data Boudout). Setiap mengenkripsi satu satuan data digunakan kunci yang merupakan hasil pembangkitan dari kunci sebelum.

Algoritma-algoritma sandi kunci-simetris

Beberapa contoh algoritma yang menggunakan kunci-simetris:

Algoritma Sandi Kunci-Asimetris

Skema ini adalah algoritma yang menggunakan kunci yang berbeda untuk proses enkripsi dan dekripsinya. Skema ini disebut juga sebagai sistem kriptografi kunci publik karena kunci untuk enkripsi dibuat untuk diketahui oleh umum (public-key) atau dapat diketahui siapa saja, tapi untuk proses dekripsinya hanya dapat dilakukan oleh yang berwenang yang memiliki kunci rahasia untuk mendekripsinya, disebut private-key. Dapat dianalogikan seperti kotak pos yang hanya dapat dibuka oleh tukang pos yang memiliki kunci tapi setiap orang dapat memasukkan surat ke dalam kotak tersebut. Keuntungan algoritma model ini, untuk berkorespondensi secara rahasia dengan banyak pihak tidak diperlukan kunci rahasia sebanyak jumlah pihak tersebut, cukup membuat dua buah kunci, yaitu kunci publik bagi para korensponden untuk mengenkripsi pesan, dan kunci privat untuk mendekripsi pesan. Berbeda dengan skema kunci-simetris, jumlah kunci yang dibuat adalah sebanyak jumlah pihak yang diajak berkorespondensi.

Fungsi Enkripsi dan Dekripsi Algoritma Sandi Kunci-Asimetris

Apabila Ahmad dan Bejo hendak bertukar berkomunikasi, maka:

  1. Ahmad dan Bejo masing-masing membuat 2 buah kunci
    1. Ahmad membuat dua buah kunci, kunci-publik   dan kunci-privat  
    2. Bejo membuat dua buah kunci, kunci-publik   dan kunci-privat  
  2. Mereka berkomunikasi dengan cara:
    1. Ahmad dan Bejo saling bertukar kunci-publik. Bejo mendapatkan   dari Ahmad, dan Ahmad mendapatkan   dari Bejo.
    2. Ahmad mengenkripsi teks-terang   ke Bejo dengan fungsi  
    3. Ahmad mengirim teks-sandi   ke Bejo
    4. Bejo menerima   dari Ahmad dan membuka teks-terang dengan fungsi  

Hal yang sama terjadi apabila Bejo hendak mengirimkan pesan ke Ahmad

  1. Bejo mengenkripsi teks-terang   ke Ahmad dengan fungsi  
  2. Ahmad menerima   dari Bejo dan membuka teks-terang dengan fungsi  

Algoritma -Algoritma Sandi Kunci-Asimetris

Fungsi Hash Kriptografis

Fungsi hash Kriptografis adalah fungsi hash yang memiliki beberapa sifat keamanan tambahan sehingga dapat dipakai untuk tujuan keamanan data. Umumnya digunakan untuk keperluan autentikasi dan integritas data. Fungsi hash adalah fungsi yang secara efisien mengubah string input dengan panjang berhingga menjadi string output dengan panjang tetap yang disebut nilai hash.

Sifat-Sifat Fungsi Hash Kriptografi

  • Tahan preimej (Preimage resistant): bila diketahui nilai hash h maka sulit (secara komputasi tidak layak) untuk mendapatkan m dimana h = hash(m).
  • Tahan preimej kedua (Second preimage resistant): bila diketahui input m1 maka sulit mencari input m2 (tidak sama dengan m1) yang menyebabkan hash(m1) = hash(m2).
  • Tahan tumbukan (Collision-resistant): sulit mencari dua input berbeda m1 dan m2 yang menyebabkan hash(m1) = hash(m2)

Algoritma-Algoritma Fungsi Hash Kriptografi

Beberapa contoh algoritma fungsi hash Kriptografi:

  1. ^ Liddell and Scott's Greek-English Lexicon. Oxford University Press. (1984)
  2. ^ Rivest, Ronald L. (1990). "Cryptology". Dalam J. Van Leeuwen. Handbook of Theoretical Computer Science. 1. Elsevier. 
  3. ^ Bellare, Mihir; Rogaway, Phillip (21 September 2005). "Introduction". Introduction to Modern Cryptography. hlm. 10. 
  4. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama hac
  5. ^ "UK Data Encryption Disclosure Law Takes Effect". Pcworld.com. 2007-10-01. Diakses tanggal 2012-01-28. 
  6. ^ Leyden, John (2011-07-13). "US court test for rights not to hand over crypto keys". Theregister.co.uk. Diakses tanggal 2012-01-28. 
  7. ^ a b c David Kahn, The Codebreakers, 1967, ISBN 0-684-83130-9.
  8. ^ Oded Goldreich, Foundations of Cryptography, Volume 1: Basic Tools, Cambridge University Press, 2001, ISBN 0-521-79172-3
  9. ^ "Cryptology (definition)". Merriam-Webster's Collegiate Dictionary (edisi ke-11th). Merriam-Webster. Diakses tanggal 2008-02-01. 
  10. ^ http://staff.neu.edu.tr/~fahri/cryptography.html
  11. ^ V. V. I︠A︡shchenko (2002). "Cryptography: an introduction". AMS Bookstore. p.6. ISBN 0-8218-2986-6