Teorema Lagrange
Dalam teori grup, teorema Lagrange mengatakan bahwa untuk suatu grup hingga berorde , orde dari setiap subgrup haruslah membagi . Teorema ini dinamai berdasarkan seorang matematikawan Prancis, Joseph-Louis de Lagrange.
Bukti
suntingUntuk membuktikan teorema Lagrange, dapat digunakan koset dari suatu subgrup. Akan ditunjukkan bahwa setiap koset suatu subgrup berukuran sama, sehingga haruslah setiap koset dari suatu subgrup memiliki anggota sebanyak orde dari . Hal ini dapat dilakukan dengan membangun suatu bijeksi untuk sebarang dengan . Mudah ditunjukkan bahwa pemetaan tersebut merupakan bijeksi dengan invers . Akibatnya, kita dapatkan setiap koset dari subgrup berukuran sama. Berikutnya, karena koset-koset dari mempartisi grup atas akibat dari relasi ekuivalensi , kita dapatkan banyaknya anggota dari sama dengan banyaknya koset dari dikali banyaknya anggota dari (karena semua koset berukuran sama). Akibatnya, kita dapatkan sehingga orde tiap subgrup haruslah membagi orde grupnya. Dengan demikian kita selesai.
Konvers dari Teorema Lagrange
suntingSecara umum, konvers dari teorema Lagrange tidak berlaku. Yakni, jika membagi orde dari , belum tentu terdapat suatu subgrup dari yang berorde . Sebagai contoh, grup berayun (yakni grup dari permutasi genap) yang berorde 12 tidak memiliki subgrup berorde 6.