Biokimia: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
RianHS (bicara | kontrib)
k RianHS memindahkan halaman Biokemistri ke Biokimia dengan menimpa pengalihan lama: Biokemistri tidak umum dipakai
Bot5958 (bicara | kontrib)
k Perbaikan untuk PW:CW (Fokus: Minor/komestika; 1, 48, 64) + genfixes
Baris 1:
{{Ilmu|cTopic=Biologi}}
'''Biokimia''' atau '''kimia biologis''', adalah ilmu yang mempelajari [[proses kimia|proses-proses kimia]] yang ada di dalam tubuh dan yang berhubungan dengan [[Makhluk hidup|organisme]] hidup.<ref>{{Cite web|title=Biological/Biochemistry|url=http://www.acs.org/content/acs/en/careers/college-to-career/areas-of-chemistry/biological-biochemistry.html.html|website=acs.org}}</ref> Sebagai subdisiplin dari [[biologi]] dan [[kimia]], biokimia dapat dibagi menjadi tiga bidang: [[Biologibiologi struktur|biologi struktural]]al, [[enzim]], dan [[metabolisme]]. Selama beberapa dekade terakhir pada abad ke-20, biokimia telah berhasil menjelaskan proses kehidupan melalui tiga subdisiplin ilmu ini. Hampir semua [[Ilmu kehidupan|bidang ilmu hayat]] sedang ditemukan dan dikembangkan melalui metodologi dan penelitian biokimia.<ref name="Voet_2005Voet_20052">[[Biochemistry#Voet|Voet]] (2005), p. 3.</ref> Biokimia berfokus pada pemahaman dasar kimiawi yang memungkinkan [[Biomolekul|molekul biologis]] memunculkan proses-proses yang terjadi di dalam [[Sel (biologi)|sel]] hidup dan di antara sel,<ref name="Karp2009">[[Biochemistry#Karp|Karp]] (2009), p. 2.</ref> yang pada gilirannya berkaitan erat dengan pemahaman [[jaringan]] dan [[Organ (anatomi)|organ]], serta struktur dan fungsi organisme.<ref name="MillerSpoolman2012">[[Biochemistry#Miller|Miller]] (2012). p. 62.</ref> Biokimia berkaitan erat dengan [[biologi molekuler]] yang mempelajari mekanisme [[Molekul|molekulermolekul]]er dari fenomena biologi.<ref name="fn_1">[[Biochemistry#Astbury|Astbury]] (1961), p. 1124.</ref>
 
Sebagian besar biokimia berhubungan dengan struktur, fungsi, dan interaksi [[makromolekul]] biologis, seperti [[protein]], [[asam nukleat]], [[karbohidrat]], dan [[lipid]]. Molekul-molekul ini membangun struktur sel dan melakukan banyak fungsi yang berhubungan dengan kehidupan.<ref name="Biology">[[Biochemistry#Eldra|Eldra]] (2007), p. 45.</ref> Sifat kimiawi sel juga bergantung pada reaksi [[molekul]] dan [[Ion|ion kecil]]. Mereka dapat berupa senyawa [[Senyawa anorganik|anorganik]] (misalnya [[air]] dan ion [[logam]]) atau [[Senyawa organik|organik]] (misalnya [[asam amino]] yang digunakan untuk [[Sintesis protein|menyintesis protein]]).<ref name="Marks">[[Biochemistry#Marks|Marks]] (2012), Chapter 14.</ref> Mekanisme yang digunakan oleh [[Respirasi seluler|sel untuk memanfaatkan energi]] dari lingkungannya melalui [[reaksi kimia]] dikenal sebagai [[metabolisme]]. Temuan biokimia diterapkan terutama di [[Kedokteran|bidang kedokteran]], [[nutrisi]], dan [[pertanian]]. Dalam pengobatan, ahli biokimia menyelidiki penyebab dan [[Medikasi|penyembuhan]] [[penyakit]].<ref>[[Biochemistry#Finkel|Finkel]] (2009), pp. 1–4.</ref> Ilmu gizi mempelajari bagaimana menjaga kesehatan dan kebugaran serta pengaruh dari [[Malnutrisi|kekurangan gizi]].<ref name="FFL2010">[[Biochemistry#UNICEF|UNICEF]] (2010), pp. 61, 75.</ref> Di bidang pertanian, ahli biokimia menyelidiki [[tanah]] dan [[pupuk]]. Meningkatkan budidaya tanaman, penyimpanan tanaman, serta [[pengendalian hama]] juga merupakan tujuan penerapan biokimia.
Baris 6:
== Sejarah ==
{{Main|Sejarah biokimia}}
[[Berkas:Gerty_Theresa_Radnitz_Cori_Gerty Theresa Radnitz Cori (1896-1957)_and_Carl_Ferdinand_Cori and Carl Ferdinand Cori.jpg|upright=0.9|jmpl|[[Gerty Cori]] dan [[Carl Cori]] bersama-sama memenangkan [[Penghargaan Nobel Fisiologi atau Kedokteran|Hadiah Nobel]] pada tahun 1947 atas penemuan [[siklus Cori]] mereka di RPMI.]]
Menurut definisi yang paling komprehensif, biokimia dapat dilihat sebagai studi tentang komponen dan komposisi makhluk hidup dan bagaimana mereka bersatu dan bekerja sama menjadi bentuk kehidupan. Dalam pengertian ini, sejarah biokimia dapat berasal dari [[Yunani Kuno|zaman Yunani kuno]].<ref name="history of science">[[Biochemistry#Helvoort|Helvoort]] (2000), p. 81.</ref> Namun, biokimia sebagai [[Cabang-cabang ilmu pengetahuan sains|disiplin ilmu]] yang spesifik dimulai sekitar abad ke-19, atau lebih awal, bergantung pada aspek biokimia mana yang difokuskan. Beberapa orang berpendapat bahwa biokimia mungkin dimulai sejak penemuan molekul [[enzim]] yang pertama, yaitu [[diastase]] (sekarang disebut [[amilase]]), pada tahun 1833 oleh [[Anselme Payen]],<ref>[[Biochemistry#Hunter|Hunter]] (2000), p. 75.</ref> sementara yang lain menganggap demonstrasi [[Eduard Buchner]] mengenai proses biokimia kompleks pertama, yaitu [[Fermentasi etanol|fermentasi alkohol]] pada ekstrak yang bebas-sel pada tahun 1897 sebagai tanda kelahiran biokimia.<ref>[[Biochemistry#Hamblin|Hamblin]] (2005), p. 26.</ref><ref>[[Biochemistry#Hunter|Hunter]] (2000), pp. 96–98.</ref> Beberapa orang juga mungkin menunjuk karya berpengaruh yang terbit pada tahun 1842 oleh [[Justus Liebig|Justus von Liebig]], ''Kimia hewan, atau, Kimia organik dalam aplikasinya pada fisiologi dan patologi'', yang mempresentasikan teori kimia tentang metabolisme, sebagai permulaan dari biokimia,<ref name="history of science" /> atau bahkan sejak studi abad ke-18 tentang [[fermentasi]] dan [[Respirasi seluler|respirasi]] oleh [[Antoine Lavoisier]].<ref>[[Biochemistry#Berg|Berg]] (1980), pp. 1–2.</ref><ref>[[Biochemistry#Holmes|Holmes]] (1987), p. xv.</ref> Banyak pionir lain disebut sebagai pendiri biokimia modern karena membantu mengungkap kompleksitas biokimia. [[Emil Fischer]], yang mempelajari kimia protein,<ref>[[Biochemistry#Feldman|Feldman]] (2001), p. 206.</ref> dan [[Frederick Gowland Hopkins|F. Gowland Hopkins]], yang mempelajari enzim dan sifat dinamis biokimia, mewakili dua contoh ahli biokimia awal.<ref>[[Biochemistry#Rayner|Rayner-Canham]] (2005), p. 136.</ref>
 
Istilah "biokimia" sendiri berasal dari gabungan antara [[biologi]] dan [[kimia]]. Pada tahun 1877, [[Felix Hoppe-Seyler]] menggunakan istilah ini (''biochemie'' dalam bahasa Jerman) sebagai sinonim untuk [[Biokimia|kimia fisiologis]] dalam kata pengantar untuk edisi pertama ''[[Biological Chemistry|Zeitschrift für Physiologische Chemie]]'' (Jurnal Kimia Fisiologis) ketika ia menyarankan untuk mendirikan lembaga yang didedikasikan untuk bidang studi ini.<ref>[[Biochemistry#Ziesak|Ziesak]] (1999), p. 169.</ref><ref>[[Biochemistry#Kleinkauf|Kleinkauf]] (1988), p. 116.</ref> Ahli [[Kimiawan|kimia]] Jerman [[Carl Neuberg]] sering dikutip bahwa telah menciptakan kata tersebut pada tahun 1903,<ref name="Ben-Menahem 2009">[[Biochemistry#Ben|Ben-Menahem]] (2009), p. 2982.</ref><ref>[[Biochemistry#Amsler|Amsler]] (1986), p. 55.</ref><ref>[[Biochemistry#Horton|Horton]] (2013), p. 36.</ref> sementara beberapa orang lain mengkreditkannya ke [[Franz Hofmeister]].<ref>[[Biochemistry#Kleinkauf|Kleinkauf]] (1988), p. 43.</ref>
[[Berkas:DNA_orbit_animatedDNA orbit animated.gif|upright=0.8|kiri|jmpl|Struktur DNA (1D65)<ref>[[Biochemistry#Edwards|Edwards]] (1992), pp. 1161–1173.</ref>]]
Pada awalnya, orang-orang secara umum memercayai bahwa kehidupan dan materialnya memiliki beberapa sifat atau substansi esensial (yang sering disebut sebagai "[[Vitalisme|prinsip vital]]") yang berbeda dari materi yang ditemukan pada benda tak hidup, dan menganggap bahwa hanya makhluk hidup yang dapat menghasilkan molekul kehidupan (senyawa organik).<ref>[[Biochemistry#Fiske|Fiske]] (1890), pp. 419–20.</ref> Pada tahun 1828, [[Friedrich Wöhler]] menerbitkan tulisan tentang [[Sintesis Wöhler|sintesis]] [[urea]], yang membuktikan bahwa senyawa [[Kimia organik|organik]] dapat dibuat secara artifisial.<ref name="Kauffman 2001">[[Biochemistry#Kauffman|Kauffman]] (2001), pp. 121–133.</ref> Sejak itu, biokimia mulai maju, terutama sejak pertengahan abad ke-20 dengan perkembangan teknik baru seperti [[kromatografi]], [[Kristalografi sinar-X|difraksi sinar-X]], [[interferometri polarisasi ganda]], [[Spektroskopi resonansi magnetik inti|spektroskopi NMR]], [[pelabelan radioisotop]], [[mikroskop elektron]], dan simulasi [[dinamika molekuler]]. Teknik-teknik ini memungkinkan penemuan dan analisis yang lebih mendalam dari berbagai molekul dan [[Lintasan metabolisme|jalur metabolisme]] [[Sel (biologi)|sel]], seperti [[glikolisis]] dan [[Siklus asam sitrat|siklus Krebs]] (siklus asam sitrat), serta mengarah pada pemahaman tentang biokimia pada tingkat molekuler. Perkembangan ilmu baru seperti [[bioinformatika]] juga banyak membantu dalam peramalan dan pemodelan struktur [[molekul raksasa]].
 
Baris 17:
== Bahan awal: unsur kimia kehidupan ==
{{main|Komposisi tubuh manusia|mineral (nutrisi)}}
[[Berkas:201_Elements_of_the_Human_Body201 Elements of the Human Body.02.svg|jmpl|Unsur-unsur{{Pranala mati|date=Februari 2021 |bot=InternetArchiveBot |fix-attempted=yes }} utama penyusun tubuh manusia, mulai dari yang paling melimpah (berdasarkan massa) hingga paling sedikit.]]
Sekitar dua lusin [[unsur kimia]] bersifat esensial untuk berbagai jenis [[Kehidupan|kehidupan biologis]]. Mayoritas unsur paling langka di Bumi tidak dibutuhkan oleh organisme (kecuali [[selenium]] dan [[Iodin|yodium]]),<ref>{{Cite book|last=Cox, Nelson, Lehninger|date=2008|title=Lehninger Principles of Biochemistry|publisher=Macmillan}}</ref> sementara beberapa unsur yang umum ditemukan ([[aluminium]] dan [[titanium]]) tidak digunakan. Sebagian besar organisme membutuhkan unsur-unsur yang sama, tetapi ada perbedaan kebutuhan antara [[tumbuhan]] dan [[hewan]]. Misalnya, alga laut menggunakan [[Bromin|brom]], tetapi tumbuhan dan hewan darat tampaknya tidak membutuhkannya. Semua hewan membutuhkan [[natrium]], tetapi beberapa tumbuhan tidak. Tumbuhan membutuhkan [[boron]] dan [[silikon]], tetapi hewan mungkin tidak (atau mungkin membutuhkannya dalam jumlah yang sangat kecil).
 
Baris 59:
=== Lipid ===
{{Main|Lipid}}
[[Berkas:Common_lipids_lmapsCommon lipids lmaps.png|ka|jmpl|320x320px|Struktur{{Pranala mati|date=Februari 2021 |bot=InternetArchiveBot |fix-attempted=yes }} umum beberapa lipid. Di bagian atas adalah [[kolesterol]] dan [[asam oleat]].<ref>[[Biochemistry#Stryer|Stryer]] (2007), p. 328.</ref> Struktur di tengah adalah [[trigliserida]] yang terdiri dari rantai [[Asam oleat|oleoil]], [[Asam stearat|stearoil]], dan [[Asam palmitat|palmitoil]] yang melekat pada [[gliserol]] sebagai "tulang punggung". Di bagian bawah adalah [[fosfolipid]] umum, [[Fosfatidil kolina|fosfatidilkolin]].<ref>[[Biochemistry#Voet|Voet]] (2005), Ch. 12 Lipids and Membranes.</ref>]]
[[Lipid]] terdiri dari beragam [[molekul]] dan sampai batas tertentu merupakan sebutan untuk semua senyawa yang relatif tidak larut dalam air atau [[Polaritas (kimia)|nonpolar]] yang berasal dari materi biologis, termasuk [[Malam (zat)|lilin]], [[Asam lemak|asam]] lemak, [[fosfolipid]], serta turunan asam lemak seperti [[sfingolipid]], [[glikolipid]], dan [[terpenoid]] (misalnya [[retinoid]] dan [[steroid]]). Beberapa lipid merupakan molekul [[Senyawa alifatik|alifatik]] rantai terbuka yang linier, sementara lipid yang lain memiliki struktur cincin. Beberapa lipid bersifat [[Aromatisitas|aromatik]] (dengan struktur siklik [cincin] dan planar [datar]) sementara yang lainnya tidak. Beberapa di antara mereka fleksibel, sementara yang lain kaku.
 
Baris 78:
 
Struktur protein bisa dijelaskan melalui empat tingkatan. [[Struktur protein|Struktur primer]] protein terdiri dari rangkaian linier asam amino, misalnya, "alanin-glisin-triptofan-serin-glutamat-asparagin-glisin-lisin-…". [[Struktur protein|Struktur sekunder]] lebih berkaitan dengan morfologi lokal (morfologi adalah studi tentang struktur). Beberapa kombinasi asam amino akan cenderung membentuk gulungan yang disebut dengan [[Uliran alfa|uliran alfa (''α-helix'')]] atau menjadi lembaran yang disebut dengan [[Lembaran beta|lembaran beta (''β-sheet'')]]. [[Struktur protein|Struktur tersier]] merupakan bentuk tiga dimensi protein secara keseluruhan. Bentuk ini ditentukan oleh urutan asam amino. Jika ada satu perubahan saja, keseluruhan struktur dapat berubah. Sebagai contoh, rantai alfa pada [[hemoglobin]] terdiri dari 146 residu asam amino; jika residu [[glutamat]] di posisi ke-6 digantikan dengan [[valin]], sifat hemoglobin akan berubah dan mengakibatkan penyakit [[anemia sel sabit]]. Terakhir, [[Struktur protein|struktur kuartener]] berkaitan dengan struktur protein dengan beberapa subunit peptida, misalnya hemoglobin dengan keempat subunitnya. Tidak semua protein memiliki lebih dari satu subunit.<ref>[[Biochemistry#Fromm|Fromm and Hargrove]] (2012), pp. 35–51.</ref>
[[Berkas:Protein_structure_examplesProtein structure examples.png|pus|jmpl|987x987px|Contoh{{Pranala mati|date=Februari 2021 |bot=InternetArchiveBot |fix-attempted=yes }} struktur protein dari [[Protein Data Bank]]]]
[[Berkas:Structural_coverage_of_the_human_cyclophilin_familyStructural coverage of the human cyclophilin family.png|ka|jmpl|481x481px|Anggota{{Pranala mati|date=Februari 2021 |bot=InternetArchiveBot |fix-attempted=yes }} keluarga protein, sebagaimana diwakili oleh struktur [[Domain protein|domain]] [[isomerase]]]]
Protein yang masuk ke dalam tubuh akan dipecah menjadi asam amino atau dipeptida di dalam [[usus halus]], baru kemudian bisa diserap oleh tubuh. Nantinya, asam amino ini dapat bergabung kembali untuk membentuk protein yang baru. Produk antara dari [[glikolisis]], [[siklus asam sitrat]], dan [[jalur fosfat pentosa]] dapat digunakan untuk membentuk kedua puluh macam asam amino. Sebagian besar bakteri dan tumbuhan memiliki semua enzim yang diperlukan untuk menyintesisnya. Manusia dan mamalia lainnya hanya dapat menyintesis sebagian dari ke-20 macam amino tersebut. Tubuh mereka tidak dapat menyintesis [[isoleusin]], [[leusin]], [[lisin]], [[metionin]], [[fenilalanin]], [[treonin]], [[triptofan]], dan [[valin]]. Karena harus didapatkan dari luar tubuh, asam amino jenis ini merupakan [[asam amino esensial]]. Mamalia memiliki enzim untuk menyintesis asam amino nonesensial, yaitu [[alanin]], [[asparagin]], [[aspartat]], [[sistein]], [[glutamat]], [[glutamin]], [[glisin]], [[prolin]], [[serin]], dan [[tirosin]]. [[Arginin]] dan [[histidin]] juga dapat disintesis oleh mamalia, tetapi hanya dapat diproduksi dalam jumlah terbatas sehingga terkadang juga disebut sebagai asam amino esensial.
 
Baris 90:
=== Asam nukleat ===
{{Main|Asam nukleat}}
[[Berkas:0322_DNA_Nucleotides0322 DNA Nucleotides.jpg|jmpl|352x352px|Bagian{{Pranala mati|date=Februari 2021 |bot=InternetArchiveBot |fix-attempted=yes }} atas: struktur [[asam deoksiribonukleat]] (DNA); bagian bawah: sebuah monomer asam nukleat, yaitu [[nukleotida]], yang terdiri atas gugus fosfat, gula pentosa, dan basa nitrogen]]
Asam nukleat merupakan [[makromolekul]] biokimia yang kompleks dan memiliki berat molekul tinggi, yang dapat menyampaikan [[Sekuens DNA|informasi genetik]] di semua sel hidup dan virus.<ref name="Voet_20052">[[Biochemistry#Voet|Voet]] (2005), p. 3.</ref> Penamaan asam nukleat diberikan karena awalnya ditemukan di [[Inti sel|nukleus]] (meskipun juga ditemukan di mitokondria dan kloroplas). Monomernya disebut [[nukleotida]] dan masing-masing terdiri dari tiga komponen: [[Basa nitrogen|basa heterosiklik nitrogen]] (baik [[Purina|purin]] ataupun [[Pirimidina|pirimidin]]), gula pentosa (gula dengan lima atom karbon), dan [[Ortofosfat|gugus fosfat]].<ref>[[Biochemistry#Saenger|Saenger]] (1984), p. 84.</ref>
[[Berkas:Nucleotides_1Nucleotides 1.svg|pus|jmpl|500x500px|Unsur-unsur{{Pranala mati|date=Februari 2021 |bot=InternetArchiveBot |fix-attempted=yes }} struktur penyusun asam nukleat secara umum. [[Nukleosida]] adalah molekul gula pentosa dan basa nitrogen. Jumlah gugus fosfat yang terikat menentukan nama molekul ini: ''nukleosida monofosfat'', ''nukleosida difosfat,'' dan ''nukleosida trifosfat''; semuanya adalah [[nukleotida]].]]
Asam nukleat yang paling umum adalah [[asam deoksiribonukleat]] (DNA) dan [[RNA (molekul)|asam ribonukleat]] (RNA). Gugus fosfat dan gula dari masing-masing nukleotida saling terikat dan terhubung untuk membentuk "tulang punggung" asam nukleat yang sering disebut dengan "unting", sedangkan urutan basa nitrogen menentukan informasi genetik yang disimpannya. Basa nitrogen yang paling umum adalah [[Adenina|adenin]], [[Sitosina|sitosin]], [[Guanina|guanin]], [[Timina|timin]], dan [[urasil]]. Basa nitrogen dari setiap unting asam nukleat akan membentuk [[ikatan hidrogen]] dengan basa nitrogen pada unting lainnya secara berpasangan (mirip dengan ritsleting). Adenin berpasangan dengan timin dan urasil, timin hanya berpasangan dengan adenin, sementara sitosin dan guanin hanya dapat berpasangan satu sama lain.
 
Baris 113:
 
== Hubungan dengan ilmu biologi "skala molekuler" lainnya ==
[[Berkas:Schematic_relationship_between_biochemistrySchematic relationship between biochemistry,_genetics_and_molecular_biology genetics and molecular biology.svg|jmpl|250x250px|Hubungan{{Pranala mati|date=Februari 2021 |bot=InternetArchiveBot |fix-attempted=yes }} skematis antara biokimia, [[genetika]], dan [[biologi molekuler]]]]
Para peneliti dalam biokimia menggunakan teknik-teknik khusus yang berasal dari biokimia, tetapi mereka semakin banyak menggabungkannya dengan teknik dan gagasan yang dikembangkan di bidang [[genetika]], [[biologi molekuler]], dan [[biofisika]]. Tidak ada garis jelas yang memisahkan antara berbagai disiplin ilmu ini. Biokimia mempelajari [[kimia]] yang diperlukan untuk aktivitas biologis molekul, [[biologi molekuler]] mempelajari aktivitas biologisnya, [[genetika]] mempelajari hereditasnya (pewarisan sifat), yang kebetulan dibawa oleh [[Genom|genomnyagenom]]nya. Hal ini diperlihatkan dalam skema yang menggambarkan satu kemungkinan tampilan hubungan di antara ketiga bidang tersebut:
 
* '''''Biokimia''''' adalah studi tentang zat kimia dan proses penting yang terjadi pada organisme hidup. [[Ahli biokimia]] berfokus pada peran, fungsi, dan struktur [[biomolekul]]. Biokimia mempelajari kehidupan di tingkat atom dan molekul.