Elektroforesis: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Need all the veritification
Baris 22:
 
Dimana ε<sub>r</sub> adalah [[konstanta dielektrik]] [[Antarmuka dan ilmu koloid|media dispersi]], ε<sub>0</sub> adalah [[Vacuum permittivity|permitivitas ruang kosong]] (C²&nbsp;N<sup>−1</sup>&nbsp;m<sup>−2</sup>), η adalah [[Viskositas#Viskositas dinamis dan kinematik|viskositas dinamis]] dari media dispersi (Pa&nbsp;s), dan ζ adalah [[Potensial Zeta|potensial zeta]] (yaitu, [[Potensial zeta|potensial elektrokinetik]] [[Lapisan ganda (ilmu permukaan)|bidang tergelincir]] pada [[Lapisan ganda (ilmu permukaan)|lapisan ganda]], satuan mV atau V).
 
Teori Smoluchowski sangat kuat karena ia bekerja untuk [[Antarmuka dan ilmu koloid|partikel terdispersi]] dalam [[bentuk]] apa pun pada [[konsentrasi]] apa pun.Ini memiliki batasan validitasnya. Ini mengikuti, misalnya, karena tidak termasuk [[panjang Debye]] κ<sup>−1</sup> (satuan m). Namun, panjang Debye harus menjadi penting untuk elektroforesis, sebagai berikut langsung dari Figur di sebelah kanan. Meningkatkan ketebalan lapisan ganda (DL) mengarah untuk menghilangkan titik gaya retardasi lebih jauh dari permukaan partikel. Semakin tebal DL, semakin kecil gaya retardasinya.
 
Analisis teoritis terperinci membuktikan bahwa teori Smoluchowski hanya valid untuk DL yang cukup tipis, ketika radius partikel ''a'' jauh lebih besar daripada panjang Debye:
 
: <math> a \kappa \gg 1</math>.
 
Model "lapisan ganda tipis" ini menawarkan penyederhanaan yang luar biasa tidak hanya untuk teori elektroforesis tetapi untuk banyak teori elektrokinetik lainnya. Model ini berlaku untuk sebagian besar sistem [[Larutan berair|air]], di mana panjang Debye biasanya hanya beberapa [[nanometer]]. Itu hanya rusak untuk koloid-nano dalam larutan dengan [[kekuatan ionik]] mendekati air.
 
Teori Smoluchowski juga mengabaikan kontribusi dari [[konduktivitas permukaan]]. Hal ini diungkapkan dalam teori modern sebagai syarat [[bilangan Dukhin]] kecil:
 
: <math> Du \ll 1 </math>
 
Dalam upaya memperluas jangkauan validitas teori elektroforesis, kasus asimtotik sebaliknya dipertimbangkan, ketika panjang Debye lebih besar dari radius partikel:
 
: <math> a \kappa < \!\, 1</math>.
 
Di bawah kondisi ini "lapisan ganda tebal", [[Erich Hückel|Hückel]]<ref>{{cite journal|last=Hückel|first=E.|year=1924|title=Die kataphorese der kugel|journal=Phys. Z.|volume=25|page=204}}</ref> memprediksi hubungan berikut untuk mobilitas elektroforetik:
 
: <math>\mu_e = \frac{2\varepsilon_r\varepsilon_0\zeta}{3\eta}</math>.
 
Model ini dapat berguna untuk beberapa nanopartikel dan cairan non-polar, di mana panjang Debye jauh lebih besar dari pada kasus biasa.
 
Ada beberapa teori analitik yang menggabungkan [[konduktivitas permukaan]] dan menghilangkan batasan bilangan Dukhin kecil, dipelopori oleh Overbeek.<ref>{{cite journal|last=Overbeek|first=J.Th.G|year=1943|title=Theory of electrophoresis — The relaxation effect|journal=Koll. Bith.|page=287}}</ref> dan Booth.<ref>{{cite journal|last=Booth|first=F.|year=1948|title=Theory of Electrokinetic Effects|journal=Nature|volume=161|issue=4081|pages=83–86|bibcode=1948Natur.161...83B|doi=10.1038/161083a0|pmid=18898334|s2cid=4115758}}</ref> Teori modern, dan ketat berlaku untuk setiap [[potensial Zeta]] dan seringkali batang ''aκ'' berasal dari teori Dukhin – Semenikhin.<ref name="DukhinSemenikhin">Dukhin, S.S. and Semenikhin N.V. "Theory of double layer polarization and its effect on electrophoresis", Koll.Zhur. USSR, volume 32, page 366, 1970.</ref>
 
Dalam batas '''lapisan ganda tipis''', teori ini mengkonfirmasi solusi numerik untuk masalah yang diberikan oleh O'Brien dan White.<ref>{{cite journal|last=O'Brien|first=R.W.|author2=L.R. White|year=1978|title=Electrophoretic mobility of a spherical colloidal particle|journal=J. Chem. Soc. Faraday Trans.|volume=2|issue=74|page=1607|doi=10.1039/F29787401607}}</ref>
 
== Jenis elektroforesis ==