Pengguna:Agung.karjono/Bak pasir/Karbon: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan
Tag: Suntingan visualeditor-wikitext
 
(5 revisi perantara oleh 3 pengguna tidak ditampilkan)
Baris 1:
{{good article}}
{{Kotak info karbon}}
 
Baris 13 ⟶ 12:
 
==Karakteristik==
[[File:Carbon basic -phase diagram-diagramp-id.pngsvg|thumb|left|Diagram fasa teoritis karbon]]
 
Perbendaan bentuk atau ''[[alotropi]]'' karbon (lihat di bawah) meliputi salah satu bahan yang dikenal palilng lunak, [[grafit]], dan juga bahan terkeras yang terbentuk secara alami, [[intan]]. Selain itu, karbon mempunyai afinitas membentuk [[ikatan kimia|ikatan]] dengan atom kecil lainnya, termasuk atom karbon lainnya, dan mampu membentuk ikatan [[kovalen]] multi-stabil dengan atom-atom ini. Alhasil, karbon dikenal membentuk hampir sepuluh juta senyawa yang berbeda; mayoritas dari seluruh [[senyawa kimia]].<ref name=lanl/> Karbon juga mempunyai titik [[sublimasi (kimia)|sublimasi]] tertinggi di antara unsur-unsur kimia. Pada [[tekanan atmosfer]], karbon tidak memiliki titik lebur karena [[titik tripel|titik tripelnya]] adalah 10,8 ± 0,2&nbsp;MPa and 4.600 ± 300 K (~4.330&nbsp;°C or 7.820&nbsp;°F),<ref name=triple2/><ref name=triple3/> sehingga ia menyublim pada sekitar 3.900&nbsp;K.<ref name="triple">{{cite journal|journal=Nature|volume=276|pages=695–696|date=1978|doi=10.1038/276695a0|title=The controversial carbon solid−liquid−vapour triple point|first=A.|last=Greenville Whittaker|issue=5689|bibcode=1978Natur.276..695W }}</ref><ref>{{cite news|url=http://lbruno.home.cern.ch/lbruno/documents/Bibliography/LHC_Note_78.pdf|title=On Graphite Transformations at High Temperature and Pressure Induced by Absorption of the LHC Beam|first=J. M.|last=Zazula|date=1997|accessdate=2009-06-06|publisher=CERN}}</ref>
Baris 58 ⟶ 57:
{{main|Alotrop karbon}}
[[Atom karbon]] adalah spesies dengan umur paling pendek dan, oleh sebab itu, karbon distabilkan dalam beragam struktur multi atom dengan konfigurasi molekul yang berbeda yang disebut [[alotrop]]. Tiga alotrop karbon yang relatif cukup dikenal adalah [[karbon amorf]], [[grafit]], dan [[intan]]. Setelah dianggap eksotis, [[fulerena]] yang saat ini sering disintesis dan digunakan dalam penelitian; mereka mulai mengungkap juga ''[[Bulkyball (molekul)|bulkyballs]]'',<ref name="buckyballs"/><ref name="nanotubes">{{cite book|editor=Ebbesen, T. W.|date=1997|title=Carbon nanotubes—preparation and properties|publisher=CRC Press|location=Boca Raton, Florida|isbn=0-8493-9602-6}}</ref> [[karbon nanotube]],<ref name="nanotubes2">{{cite journal|editor=Dresselhaus, M. S.|editor2= Dresselhaus, G.|editor3= Avouris, Ph.|date=2001|title=Carbon nanotubes: synthesis, structures, properties and applications|journal=Topics in Applied Physics|volume=80|isbn=3-540-41086-4|publisher=Springer|location=Berlin}}</ref> [[karbon nanobud]]<ref name="nanobuds">{{cite journal|date=2007|title=A novel hybrid carbon material|journal=Nature Nanotechnology|volume=2|pages=156–161|doi=10.1038/nnano.2007.37|last1=Nasibulin|first1=Albert G.|pmid=18654245|last2=Pikhitsa|first2=P.V.|last3=Jiang|first3=H.|last4=Brown|first4=D. P.|last5=Krasheninnikov|first5=A.V.|last6=Anisimov|first6=A. S.|last7=Queipo|first7=P.|last8=Moisala|first8=A.|last9=Gonzalez|first9=D.|issue=3|bibcode=2007NatNa...2..156N|display-authors=8 }}</ref> dan [[Karbon nanofiber|nanofiber]].<ref>{{cite journal|date=2007|title=Investigations of NanoBud formation|journal=Chemical Physics Letters|volume=446|pages=109–114|doi=10.1016/j.cplett.2007.08.050|last1=Nasibulin|first1=A|last2=Anisimov|first2=Anton S.|last3=Pikhitsa|first3=Peter V.|last4=Jiang|first4=Hua|last5=Brown|first5=David P.|last6=Choi|first6=Mansoo|last7=Kauppinen|first7=Esko I.|bibcode=2007CPL...446..109N }}</ref><ref>{{cite journal|date=2004|title=Synthesis and characterisation of carbon nanofibers with macroscopic shaping formed by catalytic decomposition of C{{sub|2}}H{{sub|6}}/H{{sub|2}} over nickel catalyst|journal=Applied Catalysis A|volume=274|pages=1–8|doi=10.1016/j.apcata.2004.04.008|author=Vieira, R|last2=Ledoux|first2=Marc-Jacques|last3=Pham-Huu|first3=Cuong}}</ref> Beberapa alotrop eksotis lainnya juga telah ditemukan, seperti [[lonsdaleit]],<ref name="lonsdaletite">{{cite journal|date=1967|title=Lonsdaleite, a new hexagonal polymorph of diamond|journal=Nature|volume=214|pages=587–589|doi=10.1038/214587a0|first=Frondel|last=Clifford|last2=Marvin|first2=Ursula B.|issue=5088|bibcode=1967Natur.214..587F }}</ref> ''[[glassy carbon]]'',<ref name="glassy carbon"/> [[karbon nanofoam]]<ref>{{cite journal|date=1999|title=Structural analysis of a carbon foam formed by high pulse-rate laser ablation|journal=Applied Physics A-Materials Science & Processing|volume=69|pages=S755–S758|doi=10.1007/s003390051522|author=Rode, A. V.|last2=Hyde|first2=S. T.|last3=Gamaly|first3=E. G.|last4=Elliman|first4=R. G.|last5=McKenzie|first5=D. R.|last6=Bulcock|first6=S.|issue=7}}</ref> dan [[karbon asetilen linear]] (karbin) ({{lang-en|carbyne}}).<ref name=LAC>{{cite book|author=Heimann, Robert Bertram|author2=Evsyukov, Sergey E.|author3=Kavan, Ladislav|last-author-amp=yes|title=Carbyne and carbynoid structures|url=http://books.google.com/books?id=swSQZcTmo_4C&pg=PA1|accessdate=2011-06-06|date=28 February 1999|publisher=Springer|isbn=978-0-7923-5323-2|pages=1–}}</ref>
[[File:Glassy carbon and a 1cm3 graphite cube HP68-79.jpg|thumb|left|Sampel besarkarbon ''glassybesar carbon''.mengkilat]]
 
Bentuk [[amorf]] adalah campuran beragam atom karbon dalam bentuk non-kristal, iregular, kondisi glassy, yang secara esensi adalah [[grafit]] tetapi tidak mempertahankan struktur makro kristalnya. Karbon ini hadir dalam bentuk serbuk, dan merupakan konstituen utama dalam [[arang]], [[jelaga]], dan [[karbon aktif]]. Pada tekanan normal, karbon berada dalam bentuk [[grafit]], di mana masing-masing atom terikat secara trigonal dengan tiga atom karbon lainnya pada satu bidang cincin [[Heksagon|heksagonal]], seperti yang diperlihatkan oleh [[hidrokarbon aromatik]].<ref>{{cite book|title=The polymorphism of elements and compounds|last=Jenkins|first=Edgar|date=1973|publisher=Taylor & Francis|isbn=0-423-87500-0|page=30|url=http://books.google.com/books?id=XNYOAAAAQAAJ&pg=PA30|accessdate=2011-05-01}}</ref> Hasilnya adalah 2-dimensi datar yang tersusun dan terikat lemah melalui [[gaya van der Waals]].<!-- no evidence for upper case van der Waals; see [[Talk:Van der Waals#Van should be capitalized unless preceded by first name]] rebuttal -->Hal ini menyumbang sifat grafit yang lunak dan mudah patah.
[[File:Glassy carbon and a 1cm3 graphite cube HP68-79.jpg|thumb|left|Sampel besar ''glassy carbon''.]]
 
Karena delokalisasi salah satu elektron terluar masing-masing atom untuk membentuk [[Elektron terdelokalisasi|awan-π]], grafit menghantarkan [[listrik]], tetapi hanya pada bidang masing-masing lembar [[ikatan kovalen]]. Hal ini yang menyebabkan karbon mempunyai [[konduktivitas listrik]] massal yang rendah dibandingkan kebanyakan [[logam]]. Delokalisasi juga menyebabkan stabilitas energik grafit lebih besar daripada berlian pada suhu kamar.
Because of the delocalization of one of the outer electrons of each atom to form a [[Delocalized electron|π-cloud]], graphite conducts [[electricity]], but only in the plane of each [[covalent bond|covalently bonded]] sheet. This results in a lower bulk [[electrical conductivity]] for carbon than for most [[metals]]. The delocalization also accounts for the energetic stability of graphite over diamond at room temperature.
[[File:Eight Allotropes of Carbon.png|thumb|300px|Some allotropes of carbon: a) [[diamond]]; b) [[graphite]]; c) [[lonsdaleite]]; d–f) [[fullerene]]s (C{{sub|60}}, C{{sub|540}}, C{{sub|70}}); g) [[amorphous carbon]]; h) [[carbon nanotube]].]]
 
AtPada verytekanan highyang pressuressangat carbontinggi formskarbon themembentuk more compact allotropealotrop [[diamondberlian]] yang lebih kompak, havingmemiliki nearlyhampir twicedua thekali densitylipat ofkepadatan graphitegrafit. HereDi sini, eachmasing-masing atom is bondedberikatan [[Sistem kristal tetrahedron|tetrahedrallytetrahedral]] todengan fourempat othersatom lain, thussehingga makingmembuat ajaringan 3-dimensionaldimensi networkdari ofcincin puckeredberanggotakan six-memberedenam rings of atomsatom. Diamond hasBerlian thememiliki samestruktur [[cubicSistem crystalkristal systemkubik|cubic structurekubik]] asyang sama dengan [[siliconsilikon]] anddan [[germanium]], anddan becausekarena of the strength of the carbon-carbonkekuatan [[chemicalIkatan bondkimia|bondsikatan]], itkarbon-karbon ismenjadikannya thezat hardestpaling naturallykeras occurringyang substanceterjadi secara alami [[MohsSkala scaleMohs|indalam termshal ofketahanan resistanceterhadap to scratchinggoresan]]. ContraryBerlawanan todengan thekepercayaan popularpopuler belief thatbahwa "''"[[Diamonds Are Forever (novel)|diamonds are forever]]"''", theymereka aresebenarnya secara intermodinamika facttidak thermodynamicallystabil unstabledalam underkondisi normal conditionsdan andberubah transform intomenjadi [[graphitegrafit]].<ref name="therm prop"/> Due toKarena apenghalang highenergi activationaktivasi energyyang barriertinggi, thetransisi transitionmenjadi intografit graphitebegitu issangat solambat extremelypada slowsuhu atkamar roomsehingga temperaturemenjadi astidak to be unnoticeablekentara. UnderDalam somebeberapa conditionskondisi, carbonkarbon crystallizesmengkristal assebagai [[lonsdaleitelonsdaleit]]. ThisBentuk formini hasmemiliki akisi [[hexagonalkristal]] [[crystalHeksagon|heksagonal]] latticedi wheremana allsemua atomsatom areberikatan covalentlysecara bondedkovalen. Therefore,Oleh allkarena propertiesitu, ofsemua lonsdaleitesifat arelonsdaleit closemendekati todengan those ofsifat-sifat diamondberlian.<ref name="lonsdaletite"/>
[[File:Eight Allotropes of Carbon.png|thumb|300px|SomeBeberapa allotropesalotrop of carbonkarbon: a) [[diamondberlian]]; b) [[graphitegrafit]]; c) [[lonsdaleitelonsdaleit]]; d–f) [[fullerenefulerena]]s (C{{sub|60}}, C{{sub|540}}, C{{sub|70}}); g) [[amorphouskarbon carbonamorf]]; h) [[carbonkarbon nanotube]].]]
 
[[Fullerene]]s have a graphite-like structure, but instead of purely [[hexagonal crystal system|hexagonal]] packing, they also contain pentagons (or even heptagons) of carbon atoms, which bend the sheet into spheres, ellipses or cylinders. The properties of fullerenes (split into [[Buckyball (molecule)|buckyball]]s, [[carbon nanotube|buckytubes]] and [[nanobud]]s) have not yet been fully analyzed and represent an intense area of research in [[nanomaterials]]. The names ''"fullerene"'' and ''"buckyball"'' are given after [[Buckminster Fuller|Richard Buckminster Fuller]], popularizer of [[geodesic dome]]s, which resemble the structure of fullerenes. The buckyballs are fairly large molecules formed completely of carbon bonded trigonally, forming [[spheroid]]s (the best-known and simplest is the soccerball-shaped C{{sub|60}} [[buckminsterfullerene]]).<ref name="buckyballs" /> Carbon nanotubes are structurally similar to buckyballs, except that each atom is bonded trigonally in a curved sheet that forms a hollow [[cylinder (geometry)|cylinder]].<ref name="nanotubes" /><ref name="nanotubes2" /> Nanobuds were first reported in 2007 and are hybrid bucky tube/buckyball materials (buckyballs are covalently bonded to the outer wall of a nanotube) that combine the properties of both in a single structure.<ref name="nanobuds" />
 
Of the other discovered allotropes, [[carbon nanofoam]] is a [[ferromagnetic]] allotrope discovered in 1997. It consists of a low-density cluster-assembly of carbon atoms strung together in a loose three-dimensional web, in which the atoms are bonded trigonally in six- and seven-membered rings. It is among the lightest known solids, with a density of about 2&nbsp;kg/m{{sup|3}}.<ref>{{cite journal|url=http://www.aip.org/pnu/2004/split/678-1.html|title=Carbon Nanofoam is the World's First Pure Carbon Magnet|volume=678|issue=1|date=March 26, 2004|author=Schewe, Phil|author2=Stein, Ben|last-author-amp=yes|journal=Physics News Update}}</ref> Similarly, [[glassy carbon]] contains a high proportion of closed [[porosity]],<ref name="glassy carbon"/> but contrary to normal graphite, the graphitic layers are not stacked like pages in a book, but have a more random arrangement. [[Linear acetylenic carbon]]<ref name=LAC/> has the chemical structure<ref name="LAC"/> -(C:::C){{sub|n}}-. Carbon in this modification is linear with ''sp'' [[orbital hybridization]], and is a [[polymer]] with alternating single and triple bonds. This type of carbyne is of considerable interest to [[nanotechnology]] as its [[Young's modulus]] is forty times that of the hardest known material&nbsp;– diamond.<ref>{{cite journal|title=Harder than Diamond: Determining the Cross-Sectional Area and Young's Modulus of Molecular Rods|author=Itzhaki, Lior|doi=10.1002/anie.200502448|journal=Angew. Chem. Int. Ed.|date=2005|volume=44|last2=Altus|first2=Eli|last3=Basch|first3=Harold|last4=Hoz|first4=Shmaryahu|pmid=16240306|issue=45|pages=7432–5}}</ref>
Baris 78 ⟶ 77:
Carbon is the [[Abundance of the chemical elements|fourth most abundant chemical element]] in the universe by mass after hydrogen, helium, and oxygen. Carbon is abundant in the [[Sun]], [[star]]s, [[comet]]s, and in the [[celestial body's atmosphere|atmospheres]] of most [[planet]]s.<ref name="NASA-20140221" /> Some [[meteorite]]s contain microscopic diamonds that were formed when the [[solar system]] was still a [[protoplanetary disk]]. Microscopic diamonds may also be formed by the intense pressure and high temperature at the sites of meteorite impacts.<ref>{{cite book|author=Mark, Kathleen|date=1987|title=Meteorite Craters|publisher=University of Arizona Press|isbn=0-8165-0902-6}}</ref>
 
In 2014 [[NASA]] announced a [http://www.astrochem.org/pahdb/ greatly upgraded database] for tracking [[polycyclic aromatic hydrocarbons]] (PAHs) in the [[universe]]. More than 20% of the carbon in the universe may be associated with PAHs, complex compounds of carbon and hydrogen without oxygen.<ref>{{cite news |url=http://scitechdaily.com/online-database-tracks-organic-nano-particles-across-universe/ |title=Online Database Tracks Organic Nano-Particles Across the Universe |work=Sci Tech Daily |date=February 24, 2014 |accessdate=2015-03-10 }}</ref> These compounds figure in the [[PAH world hypothesis]] where they are hypothesized to have a role in [[abiogenesis]] and formation of [[Life#Extraterrestrial life|life]]. PAHs seem to have been formed "a couple of billion years" after the [[Big Bang]], are widespread throughout the universe, and are associated with [[Star formation|new stars]] and [[exoplanets]].<ref name="NASA-20140221">{{cite web |last=Hoover |first=Rachel |title=Need to Track Organic Nano-Particles Across the Universe? NASA's Got an App for That |url=http://www.nasa.gov/ames/need-to-track-organic-nano-particles-across-the-universe-nasas-got-an-app-for-that/ |date=21 February 2014 |work=[[NASA]] |accessdate=2014-02-22 }}</ref>
 
It has been estimated that the solid earth as a whole contains 730 [[parts per million|ppm]] of carbon, with 2000 ppm in the core and 120 ppm in the combined mantle and crust.<ref>William F McDonough [http://quake.mit.edu/hilstgroup/CoreMantle/EarthCompo.pdf The composition of the Earth] in {{cite book|title=Earthquake Thermodynamics and Phase Transformation in the Earth's Interior|date=2000|isbn=978-0126851854}}</ref> Since the mass of the earth is {{val|5.972|e=24|u=kg}}, this would imply 4360 million [[gigatonne]]s of carbon. This is much more than the amounts in the oceans or atmosphere (below).
Baris 98 ⟶ 97:
[[Isotope]]s of carbon are [[atomic nucleus|atomic nuclei]] that contain six [[proton]]s plus a number of [[neutron]]s (varying from 2 to 16). Carbon has two stable, naturally occurring [[isotope]]s.<ref name="isotopes"/> The isotope [[carbon-12]] ({{sup|12}}C) forms 98.93% of the carbon on Earth, while [[carbon-13]] ({{sup|13}}C) forms the remaining 1.07%.<ref name="isotopes"/> The concentration of {{sup|12}}C is further increased in biological materials because biochemical reactions discriminate against {{sup|13}}C.<ref>{{cite journal|last=Gannes|first=Leonard Z.|last2=Del Rio|first2=Carlos Martı́nez|last3=Koch|first3=Paul|title=Natural Abundance Variations in Stable Isotopes and their Potential Uses in Animal Physiological Ecology|journal=Comparative Biochemistry and Physiology&nbsp;– Part A: Molecular & Integrative Physiology|volume=119|issue=3|pages=725–737|date=1998|doi=10.1016/S1095-6433(98)01016-2}}</ref> In 1961, the [[International Union of Pure and Applied Chemistry]] (IUPAC) adopted the isotope [[carbon-12]] as the basis for [[atomic weight]]s.<ref>{{cite web|url=http://www.bipm.org/en/si/base_units/|title=Official SI Unit definitions|accessdate=2007-12-21}}</ref> Identification of carbon in [[NMR]] experiments is done with the isotope {{sup|13}}C.
 
[[Carbon-14]] ({{sup|14}}C) is a naturally occurring [[radioisotope]] which occurs in trace amounts on Earth of up to 1 part per [[10^12|trillion]] (0.0000000001%), mostly confined to the atmosphere and superficial deposits, particularly of [[peat]] and other organic materials.<ref>{{cite web|last=Brown|first=Tom|date=March 1, 2006|url=http://www.llnl.gov/str/March06/Brown.html|title=Carbon Goes Full Circle in the Amazon|publisher=Lawrence Livermore National Laboratory|accessdate=2007-11-25}}</ref> This isotope decays by 0.158 MeV [[beta decay|β{{sup|−}} emission]]. Because of its relatively short [[half-life]] of 5730&nbsp;years, {{sup|14}}C is virtually absent in ancient rocks, but is created in the [[upper atmosphere]] (lower [[stratosphere]] and upper [[troposphere]]) by interaction of [[nitrogen]] with [[cosmic ray]]s.<ref>{{cite book|first=S.|last=Bowman|date=1990|title=Interpreting the past: Radiocarbon dating|publisher=British Museum Press|isbn=0-7141-2047-2}}</ref> The abundance of {{sup|14}}C in the [[atmosphere]] and in living organisms is almost constant, but decreases predictably in their bodies after death. This principle is used in [[radiocarbon dating]], invented in 1949, which has been used extensively to determine the age of carbonaceous materials with ages up to about 40,000&nbsp;years.<ref>{{cite book |last=Libby|first=W. F.|date=1952|title=Radiocarbon dating|publisher=Chicago University Press and references therein}}</ref><ref>{{cite web|last=Westgren|first=A.|date=1960|url=http://nobelprize.org/nobel_prizes/chemistry/laureates/1960/press.html|title=The Nobel Prize in Chemistry 1960|publisher=Nobel Foundation|accessdate=2007-11-25}}</ref>
 
There are 15 known isotopes of carbon and the shortest-lived of these is {{sup|8}}C which decays through [[proton emission]] and [[alpha decay]] and has a half-life of 1.98739x10{{sup|−21}} [[Second|s]].<ref>{{cite web|url=http://barwinski.net/isotopes/query_select.php|title=Use query for carbon-8|accessdate=2007-12-21|publisher=barwinski.net}}</ref> The exotic {{sup|19}}C exhibits a [[nuclear halo]], which means its [[radius]] is appreciably larger than would be expected if the [[Atomic nucleus|nucleus]] were a [[sphere]] of constant [[density]].<ref>{{cite journal|url=http://www.sciencemag.org/cgi/content/full/286/5437/28?ck=nck|title=Beaming Into the Dark Corners of the Nuclear Kitchen|doi=10.1126/science.286.5437.28|pages=28–31|date=1999|last1=Watson|first1=A.|journal=Science|volume=286|issue=5437}}</ref>
Baris 104 ⟶ 103:
===Formation in stars===
{{main|Triple-alpha process|CNO cycle}}
Formation of the carbon atomic nucleus requires a nearly simultaneous triple collision of [[alpha particle]]s ([[helium]] nuclei) within the core of a [[giant star|giant]] or [[supergiant]] star which is known as the [[triple-alpha process]], as the products of further nuclear fusion reactions of helium with hydrogen or another helium nucleus produce [[isotopes of lithium|lithium-5]] and [[isotopes of beryllium|beryllium-8]] respectively, both of which are highly unstable and decay almost instantly back into smaller nuclei.<ref name="Audi">{{cite journal|last1=Audi|first1=G|doi=10.1016/S0375-9474(97)00482-X|title=The Nubase evaluation of nuclear and decay properties|date=1997|pages=1–124|volume=624|journal=Nuclear Physics A|url=http://amdc.in2p3.fr/nubase/nubase97.pdf|bibcode=1997NuPhA.624....1A|last2=Bersillon|first2=O.|last3=Blachot|first3=J.|last4=Wapstra|first4=A.H.}}</ref> This happens in conditions of temperatures over 100 megakelvin and helium concentration that the rapid expansion and cooling of the early universe prohibited, and therefore no significant carbon was created during the [[Big Bang]]. Instead, the interiors of stars in the [[H-R diagram|horizontal branch]] transform three helium nuclei into carbon by means of this process.<ref name=" Ostlie" >{{cite book|author=Ostlie, D.A.|author2=Carroll, B.W.|last-author-amp=yes |title=An Introduction to Modern Stellar Astrophysics|publisher=Addison Wesley, San Francisco|date=2007|isbn=0-8053-0348-0}}</ref> In order to be available for formation of life as we know it, this carbon must then later be scattered into space as dust, in [[supernovae|supernova]] explosions, as part of the material which later forms second, third-generation star systems which have planets accreted from such dust.<ref name="NASA-20140221" /><ref>{{Cite book|last=Whittet|first=D. C. B.|date=2003|title=Dust in the Galactic Environment|pages=45–46|publisher=[[CRC Press]]|isbn=0-7503-0624-6}}</ref> The [[Solar System]] is one such [[Metallicity|third-generation star]] system. Another of the fusion mechanisms powering stars is the [[CNO cycle]], in which carbon acts as a [[catalyst]] to allow the reaction to proceed.
 
Rotational transitions of various isotopic forms of carbon monoxide (for example, {{sup|12}}CO, {{sup|13}}CO, and C{{sup|18}}O) are detectable in the [[submillimetre astronomy|submillimeter]] wavelength range, and are used in the study of [[Star formation|newly forming stars]] in [[molecular clouds]].<ref>{{cite book|author=Pikelʹner, Solomon Borisovich|title=Star formation|url=http://books.google.com/books?id=qbGLgcxnfpIC&pg=PA38|accessdate=2011-06-06|date=1977|publisher=Springer|isbn=978-90-277-0796-3|pages=38–}}</ref>