Silikon: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
HsfBot (bicara | kontrib)
k Bot: Perubahan kosmetika
Marbletan (bicara | kontrib)
 
(11 revisi perantara oleh 9 pengguna tidak ditampilkan)
Baris 2:
:''Untuk sejenis polimer, lihat [[silikone]].''
 
{{unsur|Silikon|Si|14}} [[Senyawa kimia|Senyawa]] yang dibentuk bersifat [[paramagnetik]]. Unsur kimia yang juga disebut sebagai '''zat pasir''' ini ditemukan oleh [[Jöns Jakob Berzelius]]. Silikon merupakan unsur [[metaloid]] [[tetravalensi]], bersifat lebih tidak reaktif daripada [[karbon]] (unsur nonlogam yang tepat berada di atasnya pada [[tabel periodik]], tetapi lebih reaktif daripada [[germanium]], metaloid yang berada persis di bawahnya pada tabel periodik. Kontroversi mengenai sifat-sifat silikon bermula sejak penemuannya: silikon pertama kali dibuat dalam bentuk murninya pada tahun 1824 dengan nama silisium (dari kata {{lang-la|silicis}}), dengan akhiran '''-ium''' yang berarti logam. Meski begitu, pada tahun 1831, namanya diganti menjadi silikon karena sifat-sifat fisiknya lebih mirip dengan [[karbon]] dan [[boron]].
 
Silikon merupakan [[Kelimpahan unsur kimia|elemen terbanyak]] kedelapan di alam semesta dari segi massanya, tetapi sangat jarang ditemukan dalam bentuk murni di alam. Silikon paling banyak terdistribusi pada [[debu]], [[pasir]], [[planetoid]], dan [[planet]] dalam berbagai bentuk seperti [[silikon dioksida]] atau [[silikat]]. Lebih dari 90% kerak bumi terdiri dari [[mineral silikat]], menjadikan silikon sebagai [[Kelimpahan unsur-unsur di kerak bumi|unsur kedua paling melimpah]] di kerak bumi (sekitar 28% massa) setelah [[oksigen]].<ref>Nave, R. [http://hyperphysics.phy-astr.gsu.edu/hbase/tables/elabund.html Abundances of the Elements in the Earth's Crust], Georgia State University</ref>
Baris 20:
[[Berkas:Silicon-unit-cell-3D-balls.png|160px|jmpl|kiri|Silikon mengkristal pada struktur kristal kubus berlian]]
{{See|Silikon monokristal}}
Silikon berbentuk padat pada suhu ruangan, dengan [[titik lebur]] dan [[titik didih]] masing-masing 1.400 dan 2.800 derajat celsius.<ref>{{cite book|title=The ELements: A Visual Exploration of Every Known Atom in the Universe|url=https://archive.org/details/elementsvisualex0000gray|last=Gray|first=Theodore|year=2009|publisher=Black Dog and Leventhal Publishers|isbn=978-1-57912-814-2|page= [https://archive.org/details/elementsvisualex0000gray/page/43 43]}}</ref> Yang menarik, silikon mempunyai [[massa jenis]] yang lebih besar ketika dalam bentuk cair dibanding dalam bentuk padatannya. Tapi seperti kebanyakan substansi lainnya, silikon tidak akan bercampur ketika dalam fase padatnya, tetapi hanya meluas, sama seperti es yang memiliki massa jenis lebih kecil daripada air. Karena mempunyai [[konduktivitas thermaltermal]] yang tinggi (149 W·m<sup>−1</sup>·K<sup>−1</sup>), silikon bersifat mengalirkan panas sehingga tidak pernah dipakai untuk menginsulasi benda panas.
 
Dalam bentuk [[kristal]]nya, silikon murni berwarna abu-abu metalik. Seperti [[germanium]], silikon agak kuat tetapi sangat rapuh dan mudah mengelupas. Seperti karbon dan germanium, silikon mengkristal dalam [[struktur kristal]] [[kubus berlian]], dengan jarak kisi 0,5430710&nbsp;nm (5.430710 [[Ångström|Å]]).<ref>{{cite book|last=O'Mara|first=William C.|year=1990|title=Handbook of Semiconductor Silicon Technology|pages =349–352|publisher=William Andrew Inc.|isbn=0-8155-1237-6|url=http://books.google.com/?id=COcVgAtqeKkC&pg=PA351&dq=Czochralski+Silicon+Crystal+Face+Cubic|accessdate=2008-02-24}}</ref>
Baris 26:
[[Orbital atom|Orbital elektron]] terluar dari silikon mempunyai 4 elektron valensi. Kulit atom 1s,2s,2p, dan 3s terisi penuh, sedangkan kulit atom 3p hanya terisi 2 dari jumlah maksimumnya 6.
 
Silikon bersifat [[semikonduktor]]. <!--It has a negative temperature coefficient of [[electrical resistance|resistance]], since the number of free charge carriers increases with temperature. The electrical resistance of [[single crystal]] silicon significantly changes under the application of mechanical stress due to the [[piezoresistive effect]].<ref>{{cite journal|url = http://books.google.com/books?id=C_TWB_0rRLgC&pg=PA421|page =421|title = Properties of crystalline silicon|isbn = 978-0-85296-933-5|author1 = Hull|first1 = Robert|year = 1999}}</ref>-->
 
=== Kimia ===
Baris 34:
=== Isotop ===
{{Main|Isotop silikon}}
Silikon yang eksis di alam terdiri dari 3 [[isotop]] yang stabil, yaitu silikon-28, silikon-29, dan silikon-30, dengan silikon-28 yang paling melimpah (92% [[kelimpahan alami]]).<ref name = "NNDC">{{cite web
{{cite web
|url = http://www.nndc.bnl.gov/chart/
|author = NNDC contributors
Baris 44 ⟶ 43:
|year = 2008
|location = Upton (NY)
|archive-date = 2011-08-22
|archive-url = https://www.webcitation.org/618bSplPt?url=http://www.nndc.bnl.gov/chart/
|dead-url = yes
}}</ref> Out of these, only silicon-29 is of use in [[NMR]] and [[EPR spectroscopy]].<ref>{{cite web| url = http://www.nyu.edu/cgi-bin/cgiwrap/aj39/NMRmap.cgi|accessdate = 2011-10-20| title = Interactive NMR Frequency Map| author =Jerschow, Alexej|publisher = New York University}}</ref> Dua puluh [[radioisotop]] telah diketahui, dengan silikon-32 sebagai yang paling stabil dengan [[paruh waktu]] 170 tahun dan silikon-31 dengan waktu paruh 157,3 menit.<ref name = "NNDC"/> Sisa isotop [[Peluruhan radioaktif|radioaktif]] lainnya mempunyai paruh waktu kurang dari 7 detik dan kebanyakan malah kurang dari 0,1 detik.<ref name = "NNDC"/> Silikon tidak mempunyai [[isomer nuklir]].<ref name = "NNDC"/>
 
Baris 49 ⟶ 51:
 
=== Keberadaan ===
[[Berkas:Quartz, Tibet.jpg|jmpl|kiri|160px|''QuartzGugusan crystalkristal cluster''kuarsa dari Tibet. Mineral alami ini mempunyai rumus kimia SiO<sub>2</sub>.]]
{{See also|Mineral silikat}}
Jika diukur berdasarkan massanya, silikon membentuk 27,7% massa [[kerak bumi]] dan merupakan unsur kedua yang paling melimpah di kerak bumi setelah [[oksigen]].<ref>{{cite book|url = http://books.google.com/books?id=MrlUAAAAYAAJ&pg=SL1-PA54|title = Geological Survey professional paper|author = Geological Survey (U.S.)|year = 1975}}</ref> Silikon biasanya ditemukan dalam bentuk [[mineral silikat]] yang kompleks, dan lebih jarang lagi dalam bentuk [[silikon dioksida]] ('''silika''', komponen utama pada pasir). Kristal silikon murni amat sangat jarang ditemukan di alam.
Baris 65 ⟶ 67:
=== Campuran ===
[[Berkas:Ferrosilicon.JPG|jmpl|160px|Campuran Ferrosilikon]]
[[Ferosilikon|Ferrosilikon]], campuran silikon-besi yang terdiri dari unsur silikon dan besi dengan rasio yang berbagai macam, merupakan produk utama dari proses pengolahan unsur silikon, dengan persentase 80% dari seluruh produksi dunia. China merupakan negara pemasok silikon terbesar di dunia, dengan jumlah 4,6 juta [[ton]] (atau 2/3 produksi dunia), kebanyakan dalam bentuk ferrosilikon. Disusul kemudian oleh Rusia (610.000 ton), Norwegia (330.000 ton), Brasil (240.000 ton), dan Amerika Serikat (170.000 ton).<ref>{{cite web|url = http://minerals.usgs.gov/minerals/pubs/commodity/silicon/mcs-2011-simet.pdf|publisher = USGS|title = Silicon Commodities Report 2011|accessdate = 2011-10-20}}</ref> Ferrosilikon paling banyak digunakan oleh industri baja.
 
Campuran aluminium-silikon paling banyak digunakan dalam industri pengecoran aluminium, dengan silikon sebagai bahan aditif tunggal utama untuk meningkatkan kekuatan cornya. Karena aluminium cor paling banyak digunakan pada industri otomotif, maka penggunaan silikon ini adalah penggunaan industri tunggal terbesar dari silikon murni "metallurgical grade".<ref name="diecasting">Apelian, D. (2009) [http://www.diecasting.org/research/wwr/WWR_AluminumCastAlloys.pdf Aluminum Cast Alloys: Enabling Tools for Improved Performance] {{Webarchive|url=https://web.archive.org/web/20120106013105/http://www.diecasting.org/research/wwr/WWR_AluminumCastAlloys.pdf |date=2012-01-06 }}. North American Die Casting Association, Wheeling, Illinois.</ref>
 
=== ''Metallurgical grade'' ===
Silikon tidaklah dicampur dengan unsur-unsur lain dalam jumlah besar, biasanya lebih dari 95% disebut dengan '''logam silikon'''. Logam silikon ini jumlahnya 20% dari total produksi elemen silikon dunia, dengan kurang dari 1-2% dari total elemen silikon (5–10% dari silikon ''metallurgical grade'') yang dimurnikan lagi untuk digunakan pada semikonduktor. Silikon ''metallurgical grade'' adalah silikon yang dibuat secara komersial dengan mereaksikan [[silika]] dengan kayu, arang, dan batu bara pada sebuah [[perapian listrik]] menggunakan [[elektrodaelektrode]] karbon. Pada suhu lebih dari {{convert|1900|°C|°F|abbr=on|lk=on}}, karbon dari bahan-bahan tadi dan silikon akan mengalami [[reaksi kimia]] SiO<sub>2</sub> + 2 C → Si + 2 CO. Silikon cair ada di bagian dasar tungku, yang kemudian dialirkan dan didingingkan. Silikon yang diproduksi melalui proses ini disebut silikon ''metallurgical grade'' dengan tingkat kemurnian paling kecil 98%. Dalam metode ini, [[silikon karbida]] (SiC) juga dapat terbentuk karena adanya karbon berlebih dengan reaksi kimia: SiO<sub>2</sub> + C → SiO + CO atau SiO + 2 C → SiC + CO. Meski begitu, jika konsentrasi SiO<sub>2</sub> tinggi, maka silikon karbida dapat dieliminasi dengan reaksi kimia 2 SiC + SiO<sub>2</sub> → 3 Si + 2 CO.
 
Seperti yang telah dikatakan diatas, silikon, ''metallurgical grade'' digunakan pada umumnya di industri pengecoran aluminium untuk membentuk campuran aluminium-silikon. Sisanya, digunakan oleh [[industri kimia]] untuk membentuk [[bubuk silika]].<ref name=USGS/>
 
Sampai bulan September 2008, silikon ''metallurgical grade'' dihargai 1,45 [[dolar Amerika Serikat|US$]] per pound ($3.20/kg),<ref>{{cite web|title=Metallurgical silicon could become a rare commodity – just how quickly that happens depends to a certain extent on the current financial crisis|url=http://www.photon-magazine.com/news_archiv/details.aspx?cat=News_PI&sub=worldwide&pub=4&parent=1555|publisher=Photon International|accessdate=2009-03-04|archive-date=2011-07-15|archive-url=https://web.archive.org/web/20110715082847/http://www.photon-magazine.com/news_archiv/details.aspx?cat=News_PI&sub=worldwide&pub=4&parent=1555|dead-url=yes}}</ref> naik dari $0,77 per pound ($1.70/kg) pada tahun 2005.<ref>{{cite web|title=Silicon|url=http://minerals.usgs.gov/minerals/pubs/commodity/silicon/silicmcs06.pdf|publisher=usgs.gov|accessdate=2008-02-20}}</ref>
 
=== Kualitas elektronik {{anchor|Proses Siemens}} ===
Baris 87 ⟶ 89:
 
[[Berkas:Polycrystalline silicon rod.jpg|160px|jmpl|kiri|Batang [[Polikristalin silikon]] dibuat dengan proses Siemens]]
Pada suatu waktu, [[DuPont]] memproduksi silikon ultra-murni dengan mereaksikan silikon tetraklorida dengan [[seng]] pada 950&nbsp;°C, dihasilkan silikon melalui SiCl<sub>4</sub> + 2 Zn → Si + 2 ZnCl<sub>2</sub>. Meskipun begitu, teknik ini memiliki masalah lain, (misalnya produk samping berupa [[seng klorida]] yang dihasilkan yang menyumbat) sehingga akhirnya ditemukan [[proses Siemens]]. Pada ''proses Siemens'', atang silikon dengan kemurnian tinggi direaksikan dengan triklorosilana pada 1150&nbsp;°C. Gas triklorosilana terdekomposisi dan dan tambahan silikon tersimpan dan memperbesar karena 2 HSiCl<sub>3</sub> → Si + 2 HCl + SiCl<sub>4</sub>. Silikon yang diproduksi dari proses ini disebut ''[[Silikon [[polikristalin]]''. Silikon ini mempunyai tingkat pengotor kurang dari satu ppb (''part per billion'').<ref>{{cite journal|doi = 10.1007/s11663-010-9440-y|title = Production of Solar-grade Silicon by Halidothermic Reduction of Silicon Tetrachloride|year = 2010|last1 = Yasuda|first1 = Kouji|last2 = Saegusa|first2 = Kunio|last3 = Okabe|first3 = Toru H.|journal = Metallurgical and Materials Transactions B|volume = 42|page = 37|bibcode = 2011MMTB...42...37Y }}</ref><ref>{{cite journal|doi = 10.1007/s11837-010-0190-8|title = Solar-grade silicon production by metallothermic reduction|year = 2010|last1 = Yasuda|first1 = Kouji|last2 = Okabe|first2 = Toru H.|journal = JOM|volume = 62|issue = 12|page = 94|bibcode = 2010JOM....62l..94Y }}</ref><ref>{{cite journal|doi =10.1002/recl.19590781204|title =The preparation of pure silicon|year =2010|last1 =Van Der Linden|first1 =P. C.|last2 =De Jonge|first2 =J.|journal =Recueil des Travaux Chimiques des Pays-Bas|volume =78|issue =12|page =962}}</ref>
 
Tahun 2006 [[Renewable Energy Corporation|REC]] mengumumkan bahwa mereka membangun pabrik berbasis teknologi ''[[Reaktor fluidized bed|fluidized bed]]'' (FB) yang menggunakan silana: 3 SiCl<sub>4</sub> + Si + 2 H<sub>2</sub> → 4 HSiCl<sub>3</sub>, 4 HSiCl<sub>3</sub> → 3 SiCl<sub>4</sub> + SiH<sub>4</sub>, SiH<sub>4</sub> → Si + 2 H<sub>2</sub>.<ref>{{cite web|title=Analyst silicon field trip|date=March 28, 2007| url=http://hugin.info/136555/R/1115224/203491.pdf|publisher=hugin.info|accessdate=2008-02-20}}</ref> Keuntungan proses teknologi fluid bed adalah proses dapat berlangsung kontinu dengan hasil lebih banyak daripada proses Siemens yang merupakan proses batch.
Baris 96 ⟶ 98:
 
== Senyawa ==
[[Berkas:PdmsPDMS.pngsvg|160px|ka|jmpl|[[Polidimetilsiloksana|PDMS]] – sebuah senyawa silikon]]
<!-- silisida -->
* Silikon membentuk senyawa biner yang disebut dengan [[silisida]] dengan banyak elemen logam yang nantinya menghasilkan senyawa dengan sifat yang beragam, misalnya [[magnesium silisida]], Mg<sub>2</sub>Si yang sangat reaktif sampai senyawa tahan panas seperti [[molibdenum disilisida]], MoSi<sub>2</sub>.{{sfn|Greenwood|1997|pp=335–337}}
Baris 129 ⟶ 131:
Karena hampir semua elemen silikon diproduksi sebagai paduan logam ferrosilikon, hanya sebagian kecil saja (20%) yang diproduksi menjadi silikon ''metallurgical grade'' (1,3–1,5 juta metrik ton/tahun). Logam silikon yang dimurnikan sampai kemurnian semikonduktor diperkirakan hanya 15% dari produksi silikon ''metallurgical grade''.<ref name=USGS/> Meskipun begitu, nilai ekonomi dari silikon semikonduktor ini sangat tinggi.
 
[[Silikon monokristalin]] murni digunakan untuk memproduksi [[wafer (elektronik)|wafer]] silikon yang digunakan pada [[industri semikonduktor]], elektronik, dan juga perangkat [[photovoltaic]]. Dalam konduksi muatan, silikon murni adalah [[semikonduktor intrinsik]] yang berarti ia dapat mengonduksi [[lubang elektron]] dan elektron dapat dilepaskan dari atom melalui pemanasan, maka meningkatkan [[konduktivitas listrik]] silikon dengan suhu tinggi. Silikon murni memiliki konduktivitas yang terlalu rendah untuk digunakan pada komponen elektronik. Pada praktiknya, silikon murni [[doping (semikonduktor)|didoping]] dengan elemen lain dengan konsentrasi kecil sehingga meningkatkan konduktivitasnya secara drastis. Kontrol penambahan elemen lain ini sangat penting dan umumnya diaplikasikan di [[transistor]], [[selSel surya|solar sel]], [[detektor semikonduktor]] dan [[perangkat semikonduktor]] lainnya.
 
== Referensi ==
Baris 135 ⟶ 137:
{{Portal|kimia}}
{{Compact periodic table}}
{{kimia-stub}}
 
[[Kategori:Unsur kimia]]
[[Kategori:Tabel periodik]]
[[Kategori:Silikon]]