Tabel periodik: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Wiz Qyurei (bicara | kontrib)
Tag: halaman dengan galat kutipan Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan
Wiz Qyurei (bicara | kontrib)
Tag: halaman dengan galat kutipan Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan
Baris 635:
Kecenderungan afinitas elektron menurun sepanjang golongan dari atas ke bawah sudah diperkirakan. Elektron tambahan akan memasuki orbital yang lebih jauh dari inti atom. Oleh karena elektron ini kurang tertarik oleh inti atom, maka pelepasan energinya juga lebih kecil ketika ditambahkan. Meski demikian, dalam satu golongan dari atas ke bawah, sekitar sepertiga unsur mengalami anomali, yaitu unsur-unsur yang lebih berat memiliki afinitas elektron yang lebih tinggi daripada unsur-unsur yang lebih ringan. Sebagian besar, hal ini akibat dari kurangnya perlindungan dari elektron-elektron d dan f. Penurunan seragan afinitas elektron hanya berlaku pada atom-atom golongan 1.<ref>Huheey, Keiter & Keiter, pp. 42, 880–81</ref>
 
=== KarakterSifat logam ===
Zat sederhana adalah zat yang terbentuk dari atom-atom dari satu unsur kimia. Zat sederhana dari atom yang lebih elektronegatif cenderung berbagi elektron (membentuk ikatan kovalen) satu sama lain. Mereka membentuk molekul kecil (seperti hidrogen atau oksigen, yang atom-atomnya berpasangan) atau struktur raksasa yang membentang tanpa batas (seperti karbon atau silikon). Gas mulia tetap sebagai atom tunggal, karena mereka sudah memiliki kulit yang terisi penuh.<ref name="cartoon" /> Zat yang terdiri dari molekul diskrit atau atom tunggal disatukan oleh gaya tarik menarik yang lebih lemah antara molekul, seperti [[Gaya London|gaya dispersi London]]: ketika elektron bergerak di dalam molekul, mereka menciptakan ketidakseimbangan muatan listrik sesaat, yang menginduksi ketidakseimbangan serupa pada molekul di dekatnya dan menciptakan pergerakan elektron yang tersinkronisasi melintasi banyak molekul tetangga.<ref>{{Cite web|url=https://www.chemguide.co.uk/atoms/bonding/vdw.html|title = Intermolecular bonding – van der Waals forces}}</ref>
Semakin kecil energi ionisasi, elektronegativitas, dan afinitas elektron, semakin kuat karakter [[logam]] yang dimiliki suatu unsur. Sebaliknya, karakter nonlogam meningkat sebanding dengan peningkatan sifat-sifat di atas.<ref>{{Cite|last1 = Yoder|first1 = C.H.|last2 = Suydam|first2 = F.H.|last3 = Snavely|first3 = F.A.|year = 1975|title = Chemistry|edition = 2nd|publisher = Harcourt Brace Jovanovich|page = 58|isbn = 0-15-506465-7}}</ref> Sesuai dengan tren periodik ketiga sifat ini, karakter logam cenderung menurun untuk unsur-unsur dalam periode (atau baris) yang sama dan, dengan beberapa penyimpangan (sebagian besar) akibat adanya [[Kimia kuantum relativistik|efek relativistik]],<ref>Huheey, Keiter & Keiter, pp. 880–85</ref> cenderung meningkat dari atas ke bawah untuk unsur-unsur dalam golongan (atau kolom) yang sama. Sebagian besar unsur logam (seperti [[sesium]] dan [[fransium]]) berada pada bagian kiri bawah tabel periodik tradisional dan sebagian besar unsur nonlogam ([[oksigen]], [[fluor]], [[klorin]]) di bagian kanan atas. Kombinasi tren horizontal dan vertikal pada karakter logam menjelaskan [[Garis pembatas antara logam dan nonlogam|garis pembatas]] seperti anak tangga untuk memisahkan antara logam dan non logam yang dapat dijumpai pada beberapa tabel periodik. Beberapa praktisi mengelompokkan unsur-unsur yang ada di sekitar garis batas tersebut sebagai [[metaloid]].<ref>{{Cite|last = Sacks|first = O.|year = 2009|title = Uncle Tungsten: Memories of a chemical boyhood|location = New York|publisher = Alfred A. Knopf|pages = 191, 194|isbn = 0-375-70404-3}}</ref><ref>[[#Gray|Gray]], p. 9</ref>
 
Namun, atom yang lebih elektropositif cenderung kehilangan elektron, menciptakan "lautan" elektron yang menelan kation.<ref name="cartoon" /> Orbital terluar dari satu atom tumpang tindih untuk berbagi elektron dengan semua tetangganya, menciptakan sebuah struktur orbital molekul raksasa yang memanjang di seluruh bagian struktur.<ref name="chemguidemetal">{{cite web |url=https://www.chemguide.co.uk/atoms/bonding/metallic.html |title=Metallic Bonding |last=Clark |first=Jim |date=2019 |website=Chemguide |access-date=12 Juni 2022 |archive-date=21 April 2021 |archive-url=https://web.archive.org/web/20210421105423/http://www.chemguide.co.uk/atoms/bonding/metallic.html |url-status=live }}</ref> "Laut" bermuatan negatif ini menarik semua ion dan menyatukannya dalam [[ikatan logam]]. Unsur-unsur yang membentuk ikatan semacam itu disebut [[logam]]; mereka yang tidak disebut [[nonlogam]].<ref name="cartoon" /> Beberapa elemen dapat membentuk beberapa zat sederhana dengan struktur yang berbeda: ini disebut [[Alotropi|alotrop]]. Misalnya, [[Intan|berlian]] dan [[grafit]] adalah dua alotrop karbon.<ref name="Scerri14" />
 
Sifat logam suatu unsur dapat diprediksi dari sifat-sifat elektronik. Ketika orbital atom tumpang tindih selama ikatan logam atau kovalen, mereka menciptakan [[orbital molekul]] ikatan dan antiikatan dengan kapasitas yang sama, dengan orbital antiikatan berenergi lebih tinggi. Karakter ikatan bersih terjadi ketika elektron pada orbital ikatan lebih banyak daripada jumlah elektron pada orbital antiikatan. Ikatan logam dengan demikian dimungkinkan ketika jumlah elektron yang terdelokalisasi oleh setiap atom kurang dari dua kali jumlah orbital yang berkontribusi saat tumpang tindih. Ini adalah situasi untuk unsur-unsur dalam golongan 1 sampai 13; mereka juga memiliki terlalu sedikit elektron valensi untuk membentuk struktur kovalen raksasa di mana semua atom mengambil posisi yang setara, dan hampir semuanya menjadi logam. Pengecualiannya adalah hidrogen dan boron, yang memiliki energi ionisasi yang terlalu tinggi. Hidrogen dengan demikian membentuk molekul kovalen H<sub>2</sub>, dan boron membentuk struktur kovalen raksasa berdasarkan kluster B<sub>12</sub> ikosahedral. Dalam sebuah logam, orbital ikatan dan antiikatan memiliki energi yang tumpang tindih, menciptakan pita tunggal yang dapat dilalui elektron dengan bebas, memungkinkan terjadinya konduksi listrik.<ref name=Siekierski>{{cite book|title=Concise Chemistry of the Elements|year=2002|pages=60–66|publisher=Horwood|isbn=978-1-898563-71-6|last1=Siekierski|first1=S.|last2=Burgess|first2 =J.}}</ref>
 
Di golongan 14, ikatan logam dan kovalen menjadi mungkin. Dalam kristal berlian, ikatan kovalen antara atom karbon kuat, karena mereka memiliki jari-jari atom kecil dan dengan demikian nukleus lebih banyak menahan elektron. Oleh karena itu, orbital ikatan yang dihasilkan memiliki energi yang jauh lebih rendah daripada orbital antiikatan, dan tidak ada tumpang tindih, sehingga konduksi listrik menjadi tidak mungkin: karbon adalah nonlogam. Namun, ikatan kovalen menjadi lebih lemah untuk atom yang lebih besar, sehingga silikon dan germanium memiliki celah pita yang lebih kecil dan merupakan [[semikonduktor]]: elektron dapat melewati celah saat tereksitasi secara termal. Akhirnya celah pita menghilang dalam timah, sehingga timah dan timbal menjadi logam.<ref name=Siekierski/>
 
Unsur-unsur dalam golongan 15 sampai 17 memiliki terlalu banyak elektron untuk membentuk molekul kovalen raksasa yang membentang di seluruh dimensi. Untuk unsur yang lebih ringan, ikatan dalam molekul diatomik kecil begitu kuat sehingga fase terkondensasi tidak dapat terjadi: dengan demikian nitrogen (N<sub>2</sub>), oksigen (O<sub>2</sub>), fosforus putih (P<sub>4</sub>), belerang (S<sub>8</sub>), dan halogen stabil (F<sub>2</sub>, Cl<sub>2</sub>, Br<sub>2</sub>, and I<sub>2</sub>) dapat membentuk molekul kovalen dengan sedikit atom. Unsur yang lebih berat cenderung membentuk rantai panjang (misalnya fosforus merah, selenium abu-abu, telurium) atau struktur berlapis (misalnya karbon sebagai grafit, fosforus hitam, arsen abu-abu, antimon abu-abu, bismut) yang hanya memanjang dalam satu atau dua daripada tiga dimensi. Karena struktur ini tidak menggunakan semua orbitalnya untuk ikatan, mereka berakhir dengan pita ikatan, nonikatan, dan antiikatan dengan urutan peningkatan energi. Sama halnya dengan golongan 14, celah pita menyusut untuk unsur yang lebih berat dan pergerakan bebas elektron antara rantai atau lapisan menjadi mungkin. Jadi misalnya fosforus hitam, arsen hitam, selenium abu-abu, telurium, dan iodin adalah semikonduktor; arsen abu-abu, antimon abu-abu, dan bismut adalah [[semilogam]] (memperlihatkan konduksi kuasi-logam, dengan tumpang tindih pita yang sangat kecil); dan polonium dan mungkin astatin adalah logam sejati.<ref name=Siekierski/> Akhirnya, semua unsur golongan 18 alami tetap sebagai atom individu.<ref name=Siekierski/>{{efn|Semua ini hanya menggambarkan situasi pada tekanan standar. Di bawah tekanan yang cukup tinggi, celah pita dari setiap unsur padat mengalami penurunan ke nol dan metalisasi terjadi. Jadi, misalnya pada sekitar 170&nbsp;[[bar (satuan)|kbar]] iodin menjadi logam,<ref name=Siekierski/> [[hidrogen metalik]] harus terbentuk pada tekanan sekitar empat juta [[Atmosfer (satuan)|atmosfer]].<ref>{{cite journal |last1=McMinis |first1=J. |last2=Clay |first2=R.C. |last3=Lee |first3=D. |last4=Morales |first4=M.A. |year=2015 |title=Molecular to Atomic Phase Transition in Hydrogen under High Pressure |journal=[[Physical Review Letters|Phys. Rev. Lett.]] |volume=114 |issue=10 |pages=105305 |doi=10.1103/PhysRevLett.114.105305 |pmid=25815944 |bibcode=2015PhRvL.114j5305M|doi-access=free }}</ref>}}
 
Garis pemisah antara logam dan nonlogam kira-kira diagonal dari kiri atas ke kanan bawah, dengan deret transisi muncul di sebelah kiri diagonal ini (karena mereka memiliki banyak orbital yang tersedia untuk tumpang tindih). Hal ini sudah diperkirakan, karena sifat logam cenderung berkorelasi dengan elektropositivitas dan kesediaan untuk kehilangan elektron, yang meningkat dari kanan ke kiri dan dari atas ke bawah. Dengan demikian, jumlah logam jauh lebih banyak daripada nonlogam. Unsur-unsur yang berada di dekat garis batas sulit untuk diklasifikasikan: mereka cenderung memiliki sifat-sifat yang berada di antara sifat-sifat logam dan nonlogam, dan mungkin memiliki beberapa sifat yang khas dari keduanya. Mereka sering disebut semilogam atau [[metaloid]].<ref name="cartoon" /> Istilah "semilogam" yang digunakan dalam pengertian ini tidak boleh dikacaukan dengan pengertian fisik yang ketat yang berkaitan dengan struktur pita: bismut secara fisik adalah semilogam, tetapi umumnya dianggap sebagai logam oleh ahli kimia.<ref>{{cite journal |last1=Hawkes |first1=Stephen J. |date=2001 |title=Semimetallicity? |journal=Journal of Chemical Education |volume=78 |issue=12 |pages=1686 |doi=10.1021/ed078p1686}}</ref>
 
[[File:Iron electrolytic and 1cm3 cube.jpg|jmpl|ka|[[Besi]], sebuah logam]]
[[File:Sulfur - El Desierto mine, San Pablo de Napa, Daniel Campos Province, Potosí, Bolivia.jpg|jmpl|ka|[[Belerang]], sebuah nonlogam]]
[[File:Arsen 1a.jpg|jmpl|ka|[[Arsen]], sebuah unsur yang sering disebut semilogam atau metaloid]]
 
Umumnya, logam terlihat mengkilap dan padat.<ref name="cartoon" /> Mereka biasanya memiliki titik lebur dan titik didih yang tinggi karena kekuatan ikatan logam, dan sering kali dapat ditempa dan ulet (mudah diregangkan dan dibentuk) karena atom dapat bergerak relatif satu sama lain tanpa memutuskan ikatan logam.<ref name="chemguidem">{{cite web |url=https://www.chemguide.co.uk/atoms/structures/metals.html |title=Metallic Structures |last=Clark |first=Jim |date=2012 |website=Chemguide |access-date=13 Juni 2022 |archive-date=24 April 2021 |archive-url=https://web.archive.org/web/20210424070514/http://www.chemguide.co.uk/atoms/structures/metals.html |url-status=live }}</ref> Mereka dapat menghantarkan listrik karena elektron mereka bebas bergerak di ketiga dimensi. Demikian pula, mereka dapat menghantarkan panas, yang ditransfer oleh elektron sebagai [[energi kinetik]] ekstra: mereka bergerak lebih cepat. Sifat-sifat ini bertahan dalam keadaan cair, seolah-olah struktur kristal hancur saat meleleh, atom-atom masih bersentuhan dan ikatan logam tetap ada, meskipun melemah.<ref name="chemguidem" /> Logam cenderung reaktif terhadap nonlogam.<ref name="cartoon" /> Beberapa pengecualian dapat ditemukan untuk generalisasi ini: misalnya, mangan,<ref name="Holl">{{cite book|publisher=Walter de Gruyter|date=1985|edition=91–100 |pages=1110–1117|isbn=978-3-11-007511-3|title=Lehrbuch der Anorganischen Chemie|first=Arnold F.|last=Holleman|author2=Wiberg, Egon|author3=Wiberg, Nils|language=de|chapter=Mangan}}</ref> arsen, antimon,<ref name="wiberg_holleman">{{cite book|title=Inorganic chemistry|author=Wiberg, Egon|author2=Wiberg, Nils|author3=Holleman, Arnold Frederick|name-list-style=amp|publisher=Academic Press|date=2001|isbn=978-0-12-352651-9|page=758}}</ref> dan bismut cenderung rapuh;<ref name="CRC">{{cite book| first = C. R.| last = Hammond| pages = [https://archive.org/details/crchandbookofche81lide/page/4 4–1<!-- not a range -->]| title = The Elements, in Handbook of Chemistry and Physics| edition = 81st| location = Boca Raton (FL, US)| publisher = CRC press| isbn = 978-0-8493-0485-9| date = 2004| url-access = registration| url = https://archive.org/details/crchandbookofche81lide/page/4}}</ref> kromium sangat keras;<ref name=r1>{{cite book|editor=G.V. Samsonov|chapter=Mechanical Properties of the Elements|doi=10.1007/978-1-4684-6066-7_7|isbn=978-1-4684-6066-7|url=http://ihtik.lib.ru/2011.08_ihtik_nauka-tehnika/2011.08_ihtik_nauka-tehnika_3560.rar|title=Handbook of the physicochemical properties of the elements|publisher=IFI-Plenum|place=New York, USA|year=1968|pages=387–446|url-status=dead|archive-url=https://web.archive.org/web/20150402123344/http://ihtik.lib.ru/2011.08_ihtik_nauka-tehnika/2011.08_ihtik_nauka-tehnika_3560.rar|archive-date=2 April 2015}}</ref> galium, rubidium, sesium, dan raksa berbentuk cair pada atau mendekati [[suhu kamar]];{{efn|Lihat [[titik lebur unsur kimia]].}} dan [[logam mulia]] seperti emas secara kimiawi sangat ''[[Lengai|inert]]''.<ref>{{cite journal |doi=10.1038/376238a0 |title=Why gold is the noblest of all the metals |date=1995 |last1=Hammer |first1=B. |last2=Norskov |first2=J. K. |journal=Nature |volume=376 |issue=6537 |pages=238–240 |bibcode=1995Natur.376..238H|s2cid=4334587 }}</ref><ref>{{cite journal |doi=10.1103/PhysRevB.6.4370 |title=Optical Constants of the Noble Metals |date=1972 |last1=Johnson |first1=P. B. |last2=Christy |first2=R. W. |journal=Physical Review B |volume=6 |issue=12 |pages=4370–4379 |bibcode=1972PhRvB...6.4370J}}</ref>
 
Nonlogam menunjukkan sifat yang berbeda. Mereka yang membentuk kristal kovalen raksasa memiliki titik lebur dan titik didih yang tinggi, karena dibutuhkan energi yang cukup besar untuk mengatasi ikatan kovalen yang kuat. Molekul-molekul diskrit yang membentuk sebagian besar disatukan oleh gaya dispersi, yang lebih mudah diatasi; sehingga mereka cenderung memiliki titik leleh dan titik didih yang lebih rendah,<ref>{{cite web |url=https://www.chemguide.co.uk/inorganic/period3/elementsphys.html |title=Atomic and Physical Properties of the Period 3 Elements |last=Clark |first=Jim |date=2018 |website=Chemguide |access-date=13 Juni 2022 |archive-date=22 April 2021 |archive-url=https://web.archive.org/web/20210422142013/http://www.chemguide.co.uk/inorganic/period3/elementsphys.html |url-status=live }}</ref> dan banyak yang berbentuk cair atau gas pada suhu kamar.<ref name="cartoon" /> Nonlogam sering kali tampak kusam. Mereka cenderung reaktif terhadap logam, kecuali untuk gas mulia, yang ''inert'' terhadap sebagian besar zat.<ref name="cartoon" /> Mereka rapuh ketika berbentuk padat karena atom mereka dipegang erat di tempatnya. Mereka kurang rapat dan menghantarkan listrik dengan buruk,<ref name="cartoon" /> karena tidak ada elektron yang bergerak.<ref name="group4">{{cite web |url=https://www.chemguide.co.uk/inorganic/group4/properties.html |title=The Trend From Non-Metal to Metal In the Group 4 Elements |last=Clark |first=Jim |date=2015 |website=Chemguide |access-date=13 Juni 2022 |archive-date=27 April 2021 |archive-url=https://web.archive.org/web/20210427234147/https://www.chemguide.co.uk/inorganic/group4/properties.html |url-status=live }}</ref> Di dekat garis batas, celah pita kecil dan oleh karena itu banyak elemen di wilayah itu merupakan semikonduktor.<ref name="group4" /> Sekali lagi ada pengecualian; misalnya, berlian memiliki konduktivitas termal tertinggi dari semua bahan yang diketahui, lebih besar dari logam apa pun.<ref name=PNU>{{cite journal |doi=10.1103/PhysRevLett.70.3764 |title=Thermal conductivity of isotopically modified single crystal diamond |year=1993 |last1=Wei |first1=Lanhua |last2=Kuo |first2=P. K. |last3=Thomas |first3=R. L. |last4=Anthony |first4=T. R. |last5=Banholzer |first5=W. F. |journal=Physical Review Letters |volume=70 |issue=24 |pages=3764–3767 |pmid=10053956 |bibcode=1993PhRvL..70.3764W}}</ref>
 
Hal yang umum untuk menetapkan kelas metaloid yang melintasi batas antara logam dan nonlogam, karena unsur-unsur di wilayah itu adalah perantara dalam sifat fisik dan kimia.<ref name="cartoon" /> Namun, tidak ada konsensus dalam literatur untuk elemen mana yang harus ditunjuk. Bila kategori seperti itu digunakan, boron, silikon, germanium, arsen, antimon, dan telurium biasanya disertakan; tetapi kebanyakan sumber memasukkan unsur-unsur lain juga, tanpa kesepakatan tentang unsur-unsur tambahan mana yang harus ditambahkan, dan beberapa lainnya mengurangi dari daftar ini sebagai gantinya.{{efn|Lihat [[Metaloid|daftar metaloid]].}} Misalnya, tabel periodik yang digunakan oleh [[Himpunan Kimia Amerika Serikat|American Chemical Society]] memasukkan polonium sebagai metaloid,<ref name="ACS" /> tetapi yang digunakan oleh [[Royal Society of Chemistry]] tidak,<ref>{{cite web |url=https://www.rsc.org/periodic-table |title=Periodic Table |date=2021 |website=www.rsc.org |publisher=[[Royal Society of Chemistry]] |access-date=13 Juni 2022 |archive-date=21 Maret 2021 |archive-url=https://web.archive.org/web/20210321033913/https://www.rsc.org/periodic-table |url-status=live }}</ref> dan yang termasuk dalam ''[[Encyclopædia Britannica]]'' tidak mengacu pada metaloid atau semilogam sama sekali.<ref name="EB" />{{efn|Klasifikasi bahkan dapat berubah dalam satu karya. Misalnya, buku ''Chemistry of the Non-Metallic Elements'' karya Sherwin dan Weston (1966) memiliki tabel periodik di hal. 7, mengklasifikasikan antimon sebagai nonlogam, tetapi pada hal. 115, antimon disebut logam.<ref>{{cite book |last1=Sherwin |first1=E. |last2=Weston |first2=G. J. |editor=Spice, J. E. |date=1966 |title=Chemistry of the Non-Metallic Elements |publisher=Pergamon Press |isbn=978-1-4831-3905-0}}</ref>}}
 
=== Manifestasi lebih lanjut dari periodisitas ===
Ada beberapa hubungan lain di seluruh tabel periodik antara unsur-unsur yang tidak berada dalam golongan yang sama, seperti [[hubungan diagonal]] antara unsur-unsur yang bersebelahan secara diagonal (misalnya litium dan magnesium).<ref name="PTSS2">Scerri, pp. 407–420</ref> Beberapa kesamaan juga dapat ditemukan antara kelompok utama dan kelompok logam transisi, atau antara aktinida awal dan logam transisi awal, ketika unsur-unsur memiliki jumlah elektron valensi yang sama. Jadi, uranium agak menyerupai kromium dan wolfram dalam golongan 6,<ref name="PTSS2" /> karena ketiganya memiliki enam elektron valensi.<ref name="Jensen" />
 
Baris pertama dari setiap blok cenderung menunjukkan sifat yang agak berbeda dari baris lainnya, karena orbital pertama dari setiap jenis (1s, 2p, 3d, 4f, 5g, dll.) secara signifikan lebih kecil daripada yang diperkirakan.<ref name="Kaupp">{{cite journal |last=Kaupp |first=Martin |date=1 Desember 2006 |title=The role of radial nodes of atomic orbitals for chemical bonding and the periodic table |journal=Journal of Computational Chemistry |volume=28 |issue=1 |pages=320–25 |doi=10.1002/jcc.20522 |pmid=17143872 |s2cid=12677737 |doi-access=free }}</ref> Derajat anomali tertinggi untuk blok-s, sedang untuk blok-p, dan kurang jelas untuk blok-d dan -f.<ref name="PTSS2" /> Ada juga perbedaan genap ganjil antara periode (kecuali pada blok-s) yang kadang-kadang dikenal sebagai periodisitas sekunder: unsur-unsur pada periode genap memiliki jari-jari atom yang lebih kecil dan lebih suka kehilangan elektron lebih sedikit, sedangkan unsur-unsur pada periode ganjil (kecuali periode pertama) berbeda dalam arah yang berlawanan. Jadi, banyak sifat di blok-p menunjukkan tren zigzag daripada tren mulus di sepanjang grup. Misalnya, fosforus dan antimon dalam periode ganjil dari grup 15 mudah mencapai bilangan oksidasi +5, sedangkan nitrogen, arsen, dan bismut dalam periode genap lebih suka tetap pada +3.<ref name="PTSS2" /><ref name="primefan">{{cite web |url=http://www.primefan.ru/stuff/personal/ptable.pdf |title=Периодическая система химических элементов Д. И. Менделеева |trans-title=D. I. Mendeleev's periodic system of the chemical elements |last=Kulsha |first=Andrey |date=2004 |website=primefan.ru |access-date=13 Juni 2022 |language=ru |archive-date=22 Oktober 2020 |archive-url=https://web.archive.org/web/20201022010244/http://www.primefan.ru/stuff/personal/ptable.pdf |url-status=live }}</ref>
 
[[File:Pouring liquid mercury bionerd.jpg|thumb|right|Raksa cair yang mengalir. Keadaan cairnya pada suhu kamar adalah hasil dari relativitas khusus.]]
Ketika inti atom menjadi bermuatan tinggi, [[relativitas khusus]] diperlukan untuk mengukur efek inti atom pada awan elektron. [[Kimia kuantum relativistik|Efek relativistik]] ini mengakibatkan unsur-unsur berat semakin memiliki sifat yang berbeda dibandingkan dengan homolognya yang lebih ringan dalam tabel periodik. Misalnya, efek relativistik menjelaskan mengapa [[emas]] berwarna keemasan dan [[raksa]] adalah cairan.<ref name="PekkaPyykko">{{cite journal |doi=10.1021/ar50140a002 |title=Relativity and the periodic system of elements |year=1979 |last1=Pyykkö |first1=Pekka |last2=Desclaux |first2=Jean Paul |journal=Accounts of Chemical Research |volume=12 |issue=8 |pages=276}}</ref><ref name="Norrby">{{cite journal |doi=10.1021/ed068p110 |title=Why is mercury liquid? Or, why do relativistic effects not get into chemistry textbooks? |year=1991 |last1=Norrby |first1=Lars J. |journal=Journal of Chemical Education |volume=68 |issue=2 |pages=110 |bibcode = 1991JChEd..68..110N}}</ref> Efek ini diperkirakan akan menjadi sangat kuat pada akhir periode ketujuh, berpotensi menyebabkan runtuhnya periodisitas.<ref name="primefan2">{{cite web |url=http://www.primefan.ru/stuff/chem/ptable/ptable.pdf |title=Есть ли граница у таблицы Менделеева? |trans-title=Is there a boundary to the Mendeleev table? |last=Kulsha |first=A. V. |website=www.primefan.ru |access-date=13 Juni 2022 |language=ru |archive-date=17 Oktober 2020 |archive-url=https://web.archive.org/web/20201017082931/http://www.primefan.ru/stuff/chem/ptable/ptable.pdf |url-status=live }}</ref> Konfigurasi elektron dan sifat kimia hanya diketahui dengan jelas sampai unsur 108 ([[hasium]]), sehingga karakterisasi kimia dari unsur terberat tetap menjadi topik penelitian saat ini.<ref name="Schändel 2003 277">{{cite book|title=The Chemistry of Superheavy Elements|last=Schändel|first=M.|year=2003|publisher=Kluwer Academic Publishers|location=Dordrecht|isbn=978-1-4020-1250-1|page=277}}</ref>
 
Banyak sifat fisik lain dari unsur-unsur menunjukkan variasi periodik sesuai dengan hukum periodik, seperti [[titik lebur]], [[titik didih]], [[kalor peleburan]], [[entalpi penguapan]], [[Entalpi#Entalpi atomisasi|entalpi atomisasi]], dan sebagainya. Variasi periodik serupa muncul untuk senyawa unsur, yang dapat diamati dengan membandingkan [[hidrida]], [[oksida]], [[sulfida]], [[halida]], dan sebagainya.<ref name="Greenwood25" /> Sifat kimia lebih sulit untuk dijelaskan secara kuantitatif, tetapi juga menunjukkan periodisitasnya sendiri. Contohnya termasuk bagaimana bilangan oksidasi cenderung bervariasi dalam langkah 2 dalam unsur golongan utama, tetapi dalam langkah 1 untuk unsur transisi; variasi sifat [[asam]] dan [[basa]] dari unsur dan senyawanya; stabilitas senyawa; dan metode mengisolasi unsur.<ref name="Greenwood27" /> Periodisitas telah digunakan secara luas untuk memprediksi sifat-sifat unsur baru dan senyawa baru yang tidak diketahui, dan merupakan pusat dari kimia modern.<ref name="Greenwood29bis">Greenwood and Earnshaw, pp. 29–31</ref>
 
== Sejarah ==