Tabel periodik: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Glorious Engine (bicara | kontrib)
Tag: Suntingan perangkat seluler Suntingan peramban seluler
InternetArchiveBot (bicara | kontrib)
Add 2 books for Wikipedia:Pemastian (20220709)) #IABot (v2.0.8.8) (GreenC bot
Baris 640:
Namun, atom yang lebih elektropositif cenderung kehilangan elektron, menciptakan "lautan" elektron yang menelan kation.<ref name="cartoon" /> Orbital terluar dari satu atom tumpang tindih untuk berbagi elektron dengan semua tetangganya, menciptakan sebuah struktur orbital molekul raksasa yang memanjang di seluruh bagian struktur.<ref name="chemguidemetal">{{cite web |url=https://www.chemguide.co.uk/atoms/bonding/metallic.html |title=Metallic Bonding |last=Clark |first=Jim |date=2019 |website=Chemguide |access-date=12 Juni 2022 |archive-date=21 April 2021 |archive-url=https://web.archive.org/web/20210421105423/http://www.chemguide.co.uk/atoms/bonding/metallic.html |url-status=live }}</ref> "Laut" bermuatan negatif ini menarik semua ion dan menyatukannya dalam [[ikatan logam]]. Unsur-unsur yang membentuk ikatan semacam itu disebut [[logam]]; mereka yang tidak disebut [[nonlogam]].<ref name="cartoon" /> Beberapa elemen dapat membentuk beberapa zat sederhana dengan struktur yang berbeda: ini disebut [[Alotropi|alotrop]]. Misalnya, [[Intan|berlian]] dan [[grafit]] adalah dua alotrop karbon.<ref name="Scerri14" />
 
Sifat logam suatu unsur dapat diprediksi dari sifat-sifat elektronik. Ketika orbital atom tumpang tindih selama ikatan logam atau kovalen, mereka menciptakan [[orbital molekul]] ikatan dan antiikatan dengan kapasitas yang sama, dengan orbital antiikatan berenergi lebih tinggi. Karakter ikatan bersih terjadi ketika elektron pada orbital ikatan lebih banyak daripada jumlah elektron pada orbital antiikatan. Ikatan logam dengan demikian dimungkinkan ketika jumlah elektron yang terdelokalisasi oleh setiap atom kurang dari dua kali jumlah orbital yang berkontribusi saat tumpang tindih. Ini adalah situasi untuk unsur-unsur dalam golongan 1 sampai 13; mereka juga memiliki terlalu sedikit elektron valensi untuk membentuk struktur kovalen raksasa di mana semua atom mengambil posisi yang setara, dan hampir semuanya menjadi logam. Pengecualiannya adalah hidrogen dan boron, yang memiliki energi ionisasi yang terlalu tinggi. Hidrogen dengan demikian membentuk molekul kovalen H<sub>2</sub>, dan boron membentuk struktur kovalen raksasa berdasarkan kluster B<sub>12</sub> ikosahedral. Dalam sebuah logam, orbital ikatan dan antiikatan memiliki energi yang tumpang tindih, menciptakan pita tunggal yang dapat dilalui elektron dengan bebas, memungkinkan terjadinya konduksi listrik.<ref name=Siekierski>{{cite book|title=Concise Chemistry of the Elements|url=https://archive.org/details/concisechemistry00siek|year=2002|pages=60–66[https://archive.org/details/concisechemistry00siek/page/n70 60]–66|publisher=Horwood|isbn=978-1-898563-71-6|last1=Siekierski|first1=S.|last2=Burgess|first2 =J.}}</ref>
 
Di golongan 14, ikatan logam dan kovalen menjadi mungkin. Dalam kristal berlian, ikatan kovalen antara atom karbon kuat, karena mereka memiliki jari-jari atom kecil dan dengan demikian nukleus lebih banyak menahan elektron. Oleh karena itu, orbital ikatan yang dihasilkan memiliki energi yang jauh lebih rendah daripada orbital antiikatan, dan tidak ada tumpang tindih, sehingga konduksi listrik menjadi tidak mungkin: karbon adalah nonlogam. Namun, ikatan kovalen menjadi lebih lemah untuk atom yang lebih besar, sehingga silikon dan germanium memiliki celah pita yang lebih kecil dan merupakan [[semikonduktor]]: elektron dapat melewati celah saat tereksitasi secara termal. Akhirnya celah pita menghilang dalam timah, sehingga timah dan timbal menjadi logam.<ref name=Siekierski/>
Baris 708:
Pada tahun 1945, [[Glenn Seaborg]], ilmuwan Amerika, memberikan saran agar [[Aktinida|unsur-unsur aktinida]], seperti halnya [[lantanida]], mengisi sub-level f. Sebelumnya, aktinida dimasukkan ke dalam baris keempat blok-d. Kolega Seaborg menyarankan agar tidak mempublikasikan usulan radikal semacam ini karena dapat berdampak buruk pada kariernya. Setelah mempertimbangkan masak-masak hal tersebut tidak membawa dampak buruk pada reputasi maupun kariernya, akhirnya Seaborg mempublikasikan usulannya. Usulan Seaborg dinyatakan benar dan Seaborg memenangkan [[Hadiah Nobel]] bidang kimia pada tahun 1951 atas penelitiannya sintesis unsur-unsur aktinida.<ref>Scerri 2007, pp. 270‒71</ref><ref>{{Cite|last1 = Masterton|first1 = William L.|last2 = Hurley|first2 = Cecile N.|last3 = Neth|first3 = Edward J.|title = Chemistry: Principles and reactions|edition = 7th|location = Belmont, CA|publisher = Brooks/Cole Cengage Learning|page = 173|isbn = 1-111-42710-0}}</ref><ref group="n">Baris tabel periodik ekstra-panjang kedua, untuk mengakomodasi unsur-unsur yang telah diketahui dan belum terungkap dengan berat atom lebih besar daripada bismut (thorium, protaktinium dan uranium misalnya), telah didalilkan sejak 1892. Sebagian besar peneliti menganggap bahwa unsur-unsur ini analog dengan unsur transisi seri ketiga: hafnium, tantalum, wolfram. Keberadaan seri transisi dalam kedua, dalam bentuk aktinida, tidak diterima hingga ditetapkannya kesamaan struktur elektronnya dengan lantanida. Lihat: van Spronsen, J. W. (1969). ''The periodic system of chemical elements.'' Amsterdam: Elsevier. p. 315–316, [[:en:Special:BookSources/0444407766|ISBN 0-444-40776-6]].</ref>
 
Meskipun ada sejumlah kecil [[Unsur transuranium|unsur-unsur transuranium]] terdapat secara alami,<ref name="emsley">{{cite book |last=Emsley |first=John |date=2011 |title=Nature's Building Blocks: An A-Z guide to the elements |url=https://archive.org/details/naturesbuildingb0000emsl_b1k4 |edition=New |publisher=Oxford University Press |location=New York, NY |isbn=978-0-19-960563-7}}</ref> tetapi kesemuanya pertama kali ditemukan di laboratorium. Produksinya telah memperluas tabel periodik secara signifikan. Transuranium pertama yang disintesis adalah [[neptunium]] (1939).<ref>Ball, p. 123</ref> Oleh karena kebanyakan unsur-unsur transuranium sangat tidak stabil dan meluruh dengan cepat, tantangannya adalah mendeteksi dan melakukan karakterisasi segera setelah diproduksi. Ada [[Kontroversi penamaan unsur|kontroversi]] mengenai persaingan klaim penemuan untuk beberapa elemen. Hal ini membutuhkan tinjauan independen untuk menentukan pihak mana yang memiliki prioritas, dan berhak atas klaim tersebut. Unsur paling terkini yang diterima adalah [[flerovium]] (unsur 114) dan [[livermorium]] (unsur 116), keduanya diresmikan pada 31 Mei 2012.<ref>{{Cite|last1 = Barber|first1 = Robert C.|last2 = Karol|first2 = Paul J|last3 = Nakahara|first3 = Hiromichi|last4 = Vardaci|first4 = Emanuele|last5 = Vogt|first5 = Erich W.|year = 2011|title = Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report)|journal = Pure Appl. Chem.|volume = 83|issue = 7|page = 1485|doi = 10.1351/PAC-REP-10-05-01}}</ref> Pada tahun 2010, kolaborasi Rusia–AS di [[Dubna]], [[Oblast Moskwa]], Rusia, mengaku telah mensintesis enam atom [[ununseptium]] (unsur 117), membuatnya sebagai pengakuan terkini.<ref>[http://www.jinr.ru/news_article.asp?n_id=1195&language=rus <nowiki>Эксперимент по синтезу 117-го элемента получает продолжение [Experiment on sythesis of the 117th element is to be continued]</nowiki>] (in Russian). JINR. 2012
</ref>