Unsur periode 6: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan
Wiz Qyurei (bicara | kontrib)
Tidak ada ringkasan suntingan
Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan
 
(23 revisi perantara oleh 9 pengguna tidak ditampilkan)
Baris 1:
#ALIH [[Periode tabel periodik]]
{{Periodic table (micro)| title=Periode 6 dalam [[tabel periodik]] | mark=Cs,Ba,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Hf,Ta,W,Re,Os,Ir,Pt,Au,Hg,Tl,Pb,Bi,Po,At,Rn}}
<!--{{Sidebar periodic table|expanded=structure }}-->
A '''period 6 element''' is one of the [[chemical element]]s in the sixth row (or ''[[Periodic table period|period]]'') of the [[periodic table|periodic table of the elements]], including the [[lanthanide]]s. The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behaviour of the elements as their atomic number increases: a new row is begun when chemical behaviour begins to repeat, meaning that elements with similar behaviour fall into the same vertical columns. The sixth period contains 32 elements, tied for the most with [[Period 7 element|period 7]], beginning with [[caesium]] and ending with [[radon]]. [[Lead]] is currently the last stable element; all subsequent elements are [[radioactive]], however [[bismuth]] has a half-life of more than 10<sup>19</sup> years, more than 1,000 times longer than the current age of the universe. As a rule, period 6 elements fill their 6s [[electron shell|shells]] first, then their 4f, 5d, and 6p shells, in that order, however there are exceptions, such as [[cerium]].
Sebuah '''unsur periode 6''' adalah salah satu dari [[unsur kimia]] pada baris (atau [[Periode tabel periodik|periode]]) keenam dalam [[Tabel periodik|susunan berkala unsur kimia]], termasuk [[lantanida]]. Tabel periodik disusun dalam baris-baris untuk menggambarkan keberulangan tren (periodik) perilaku kimia unsur-unsur sejalan dengan kenaikan nomor atom: baris baru dimulai ketika perilaku kimia mulai berulang, artinya bahwa unsur dengan perilaku yang sama terdapat pada kolom vertikal yang sama.
 
Periode 6 mengandung 32 unsur, dimulai dari [[sesium]] dan diakhiri oleh [[radon]]. [[Timbal]] saat ini adalah unsur stabil terakhir; seluruh unsur setelahnya bersifat [[radioaktif]], tetapi [[bismut]] masih sering dianggap sebagai unsur yang stabil karena isotop utamanya, ([[:en:bismuth-209|<sup>209</sup>Bi]]) mempunyai waktu paruh lebih dari 10<sup>19</sup> tahun, lebih dari 1000 kali lebih panjang dari [[umur alam semesta]]. Sesuai kaidah, unsur periode 6 mengisi [[Kelopak elektron|kulit]] 6s terlebih dahulu, kemudian berturut-turut kulit 4f, 5d, dan 6p, tetapi terdapat perkecualian, seperti [[serium]].
==Properties==
This period contains the [[lanthanides]], also known as the ''rare earths''. Many lanthanides are known for their magnetic properties, such as [[neodymium]]. Many period 6 [[transition metals]] are very valuable, such as [[gold]], however many period 6 [[other metals]] are incredibly toxic, such as [[thallium]]. Period 6 contains the last stable element, [[lead]]. All subsequent elements in the periodic table are [[radioactive]]. After [[bismuth]], which has a half-life or more than 10<sup>19</sup> years, [[polonium]], [[astatine]], and [[radon]] are some of the [[Half-life|shortest-lived]] and rarest elements known; less than a gram of astatine is estimated to exist on earth at any given time.<ref name="Gray" >{{cite book|last=Gray|first=Theodore|title=The Elements: A Visual Exploration of Every Known Atom in the Universe|year=2009|publisher=Black Dog & Leventhal Publishers|location=New York|isbn=978-1-57912-814-2}}</ref>
 
== Sifat-sifat ==
==Atomic characteristics==
Periode ini mengandung [[lantanida]], juga dikenal sebagai ''tanah jarang''. Banyak lantanida yang dikenal karena sifat magnetiknya, seperti [[neodimium]]. Banyak [[logam transisi]] periode 6 yang sangat bernilai, seperti [[emas]], tetapi banyak pula [[logam lain]] periode 6 yang sangat beracun, misalnya [[talium]]. Salah satu anggota periode 6 adalah unsur stabil terakhir, [[timbal]]. Seluruh unsur berikutnya dalam tabel periodik bersifat [[radioaktif]]. Setelah [[bismut]], dengan waktu paruh lebih dari 10{{sup|19}} tahun, [[polonium]], [[astatin]], dan [[radon]] adalah beberapa unsur dengan [[Waktu paruh|umur terpendek]] dan yang diketahui paling langka; diperkirakan kurang dari satu gram astatin yang ada di bumi sepanjang masa.<ref name="Gray" >{{cite book|last=Gray|first=Theodore|title=The Elements: A Visual Exploration of Every Known Atom in the Universe|url=https://archive.org/details/elementsvisualex0000gray|year=2009|publisher=Black Dog & Leventhal Publishers|location=New York|isbn=978-1-57912-814-2}}</ref>
 
== Karakteristik atom ==
:{| class="wikitable sortable"
! colspan="3" | '''[[ChemicalUnsur elementkimia]]
! [[ChemicalDeret serieskimia]]
! [[ElectronKonfigurasi configurationelektron]]
|-
! &nbsp;
Baris 18 ⟶ 20:
!
|-
|| 55 || '''Cs''' || [[CaesiumSesium]] || [[AlkaliLogam metalalkali]] || [Xe] 6s<sup>1</sup>
|-
|| 56 || '''Ba''' || [[Barium]] || [[AlkalineLogam earthalkali metaltanah]] || [Xe] 6s<sup>2</sup>
|-
|| 57 || '''La''' || [[LanthanumLantanum]] || [[LanthanideLantanida]] {{ref label|Note1|a|a}} || [Xe] 5d<sup>1</sup> 6s<sup>2</sup> {{ref label|Note2|b|b}}
|-
|| 58 || '''Ce''' || [[CeriumSerium]] || LanthanideLantanida || [Xe] 4f<sup>1</sup> 5d<sup>1</sup> 6s<sup>2</sup> {{ref label|Note2|b|b}}
|-
|| 59 || '''Pr''' || [[PraseodymiumPraseodimium]] || LanthanideLantanida || [Xe] 4f<sup>3</sup> 6s<sup>2</sup>
|-
|| 60 || '''Nd''' || [[NeodymiumNeodimium]] || LanthanideLantanida || [Xe] 4f<sup>4</sup> 6s<sup>2</sup>
|-
|| 61 || '''Pm''' || [[PromethiumPrometium]] || LanthanideLantanida || [Xe] 4f<sup>5</sup> 6s<sup>2</sup>
|-
|| 62 || '''Sm''' || [[Samarium]] || LanthanideLantanida || [Xe] 4f<sup>6</sup> 6s<sup>2</sup>
|-
|| 63 || '''Eu''' || [[Europium]] || LanthanideLantanida || [Xe] 4f<sup>7</sup> 6s<sup>2</sup>
|-
|| 64 || '''Gd''' || [[Gadolinium]] || LanthanideLantanida || [Xe] 4f<sup>7</sup> 5d<sup>1</sup> 6s<sup>2</sup> {{ref label|Note2|b|b}}
|-
|| 65 || '''Tb''' || [[Terbium]] || LanthanideLantanida || [Xe] 4f<sup>9</sup> 6s<sup>2</sup>
|-
|| 66 || '''Dy''' || [[DysprosiumDisprosium]] || LanthanideLantanida || [Xe] 4f<sup>10</sup> 6s<sup>2</sup>
|-
|| 67 || '''Ho''' || [[Holmium]] || LanthanideLantanida || [Xe] 4f<sup>11</sup> 6s<sup>2</sup>
|-
|| 68 || '''Er''' || [[Erbium]] || LanthanideLantanida || [Xe] 4f<sup>12</sup> 6s<sup>2</sup>
|-
|| 69 || '''Tm''' || [[Thulium]] || LanthanideLantanida || [Xe] 4f<sup>13</sup> 6s<sup>2</sup>
|-
|| 70 || '''Yb''' || [[YtterbiumIterbium]] || LanthanideLantanida || [Xe] 4f<sup>14</sup> 6s<sup>2</sup>
|-
|| 71 || '''Lu''' || [[LutetiumLutesium]] || LanthanideLantanida {{ref label|Note1|a|a}} || [Xe] 4f<sup>14</sup> 5d<sup>1</sup> 6s<sup>2</sup>
|-
|| 72 || '''Hf''' || [[Hafnium]] || [[TransitionLogam metaltransisi]] || [Xe] 4f<sup>14</sup> 5d<sup>2</sup> 6s<sup>2</sup>
|-
|| 73 || '''Ta''' || [[Tantalum]] || TransitionLogam metaltransisi || [Xe] 4f<sup>14</sup> 5d<sup>3</sup> 6s<sup>2</sup>
|-
|| 74 || '''W''' || [[TungstenWolfram]] || TransitionLogam metaltransisi || [Xe] 4f<sup>14</sup> 5d<sup>4</sup> 6s<sup>2</sup>
|-
|| 75 || '''Re''' || [[RheniumRenium]] || TransitionLogam metaltransisi || [Xe] 4f<sup>14</sup> 5d<sup>5</sup> 6s<sup>2</sup>
|-
|| 76 || '''Os''' || [[Osmium]] || TransitionLogam metaltransisi || [Xe] 4f<sup>14</sup> 5d<sup>6</sup> 6s<sup>2</sup>
|-
|| 77 || '''Ir''' || [[Iridium]] || TransitionLogam metaltransisi || [Xe] 4f<sup>14</sup> 5d<sup>7</sup> 6s<sup>2</sup>
|-
|| 78 || '''Pt''' || [[PlatinumPlatina]] || TransitionLogam metaltransisi || [Xe] 4f<sup>14</sup> 5d<sup>9</sup> 6s<sup>1</sup> {{ref label|Note2|b|b}}
|-
|| 79 || '''Au''' || [[GoldEmas]] || TransitionLogam metaltransisi || [Xe] 4f<sup>14</sup> 5d<sup>10</sup> 6s<sup>1</sup> {{ref label|Note2|b|b}}
|-
|| 80 || '''Hg''' || [[Mercury (element)|MercuryRaksa]] || TransitionLogam metaltransisi || [Xe] 4f<sup>14</sup> 5d<sup>10</sup> 6s<sup>2</sup>
|-
|| 81 || '''Tl''' || [[ThalliumTalium]] || [[Post-transitionLogam metalpasca transisi]] || [Xe] 4f<sup>14</sup> 5d<sup>10</sup> 6s<sup>2</sup> 6p<sup>1</sup>
|-
|| 82 || '''Pb''' || [[LeadTimbal]] || Post-transitionLogam metalpasca transisi || [Xe] 4f<sup>14</sup> 5d<sup>10</sup> 6s<sup>2</sup> 6p<sup>2</sup>
|-
|| 83 || '''Bi''' || [[BismuthBismut]] || Post-transitionLogam metalpasca transisi || [Xe] 4f<sup>14</sup> 5d<sup>10</sup> 6s<sup>2</sup> 6p<sup>3</sup>
|-
|| 84 || '''Po''' || [[Polonium]] || Post-transitionLogam metalpasca transisi || [Xe] 4f<sup>14</sup> 5d<sup>10</sup> 6s<sup>2</sup> 6p<sup>4</sup>
|-
|| 85 || '''At''' || [[AstatineAstatin]] || [[Halogen]] || [Xe] 4f<sup>14</sup> 5d<sup>10</sup> 6s<sup>2</sup> 6p<sup>5</sup>
|-
|| 86 || '''Rn''' || [[Radon]] || [[NobleGas gasmulia]] || [Xe] 4f<sup>14</sup> 5d<sup>10</sup> 6s<sup>2</sup> 6p<sup>6</sup>
|}
 
* {{note label|Note1|a|a}} NotePerlu thatdicatat lutetiumbahwa lutesium (oratau, alternativelyalternatifnya, lanthanumlantanum) isdimasukkan consideredsebagai tologam be a transition metaltransisi, buttetapi markeddiberi astanda asebagai lanthanidelantanida, as it is considered sosesuai byarahan IUPAC.
* {{note label|Note2|b|b}} AnSebuah exceptionperkecualian to thedari [[Aufbauprinsip principleAufbau]].
 
== Unsur blok-s ==
==s-block elements==
 
===Caesium Sesium ===
{{main|CaesiumSesium}}
'''CaesiumSesium''' oratau '''cesiumcaesium'''{{#tag:ref|''Caesium'' isadalah theejaan spellingyang recommendeddirekomendasikan by theoleh [[International Union of Pure and Applied Chemistry]](IUPAC).<ref>{{RedBook2005|pages=248–49}}.</ref> The [[American Chemical Society]] (ACS) hastelah usedmenggunakan the spellingejaan ''cesium'' sincesejak tahun 1921,<ref>{{Cite book|editor1-first = Anne M.|editor1-last = Coghill|editor2-first = Lorrin R.|editor2-last = Garson|year = 2006|title = The ACS Style Guide: Effective Communication of Scientific Information|edition = 3rd|publisher = American Chemical Society|location = Washington, D.C.|isbn = 0-8412-3999-1|page = 127}}</ref><ref>{{Cite journal|journal=Pure Appl. Chem.|volume=70|issue=1|last1=Coplen|pages = 237–257|year = 1998|first1=T. B.|url =http://old.iupac.org/reports/1998/7001coplen/history.pdf|last2=Peiser|first2=H. S.|title = History of the recommended atomic-weight values from 1882 to 1997: a comparison of differences from current values to the estimated uncertainties of earlier values|doi = 10.1351/pac199870010237}}</ref> followingsesuai ''Webster's New International Dictionary''. TheUnsur elementini wasdiambil nameddari after thebahasa Latin word ''caesius'', meaningyang berarti "bluishabu-abu graykebiruan". MorePenjelasan spellinglebih explanationlanjut attentang perbedaan ejaan dapat dilihat di [[:en:American and British English spelling differences#Simplification of ae and oe|ae/oe vs e]].|group=notecatatan}} is theadalah [[chemicalunsur elementkimia]] with thedengan symbolsimbol '''Cs''' anddan [[atomicnomor numberatom]] 55. ItIni is a soft, silvery-goldtermasuk [[logam alkali metal]] withlunak, aberwarna meltingemas pointkeperakan ofdengan titik leleh {{convert|28&nbsp;°|C (82&nbsp;°|F)}}, whichyang makesmenjadikannya itsalah onesatu ofdari onlylima fiveunsur elementallogam metalsberwujud that(hampir) arecair liquid at (or near)pada [[roomsuhu temperaturekamar]].{{#tag:ref|AlongLainnya withadalah [[rubidium]] ({{convert|39&nbsp;°|C [102&nbsp;°|F]}}), [[franciumfransium]] (estimated atestimasi {{convert|27&nbsp;°|C [81&nbsp;°|F]}}), [[mercury (element)|mercuryraksa]] (−39&nbsp;°{{convert|-39|C [−38&nbsp;°|F]}}), anddan [[gallium]] ({{convert|30&nbsp;°|C [86&nbsp;°|F]}}); brominebrom isjuga alsoberwujud liquidcair atpada roomsuhu temperaturekamar (meltingmeleleh atpada −7{{convert|-7.2&nbsp;°|C, 19&nbsp;°|F}}) buttetapi itini is aadalah [[halogen]], not abukan metallogam.<ref>{{Cite web|url=http://www.webelements.com/|publisher=University of Sheffield|accessdate=2010-12-01|title=WebElements Periodic Table of the Elements}}</ref>|group=notecatatan}} CaesiumSesium isadalah ansebuah [[logam alkali metal]] anddan hasmempunyai physicalsifat-sifat andfisika chemicaldan propertieskimia similaryang tomirip those ofdengan [[rubidium]] anddan [[potassiumkalium]]. TheLogam metalini issangat extremelyreaktif reactive anddan [[pyrophoricitypiroforisitas|pyrophoricpiroforik]], reactingbahkan withdapat waterbereaksi evendengan at−116&nbsp;°Cair (−177&nbsp;°pada suhu {{convert|-116|C|F)}}. ItIa isadalah theunsur leastyang paling kurang [[electronegativity|electronegativeelektronegativitas]]nya elementdan havingmemiliki asebuah stableisotop isotopestabil, caesiumsesium-133. CaesiumSesium iskebanyakan minedditambang mostly fromdari ''[[pollucite]]'', while thesementara [[RadionuclideRadionuklida|radioisotopesradioisotopnya]], especiallyterutama [[caesiumsesium-137]], asebuah [[fissionproduk productfisi]], arediekstraksi extracteddari fromlimbah wasteyang produceddihasilkan byoleh [[nuclearteknologi reactorreaktor technologynuklir|nuclearreaktor reactorsnuklir]].
 
TwoDua Germankimiawan chemistsJerman, [[Robert Bunsen]] anddan [[Gustav Kirchhoff]], discoveredmenemukan caesiumsesium inpada tahun 1860 by the newly developed methodmenggunakan ofmetode [[AtomicSpektroskopi emissionemisi spectroscopyatom#FlameSpektroskopi emissionemisi spectroscopynyala|flamespektroskopi spectroscopynyala]]. Theyang firstbaru small-scaledikembangkan. applicationsAplikasi forskala caesiumkecil havepertama beensesium asadalah asebagai "[[getter]]" indalam [[vacuumtabung tubehampa]]s anddan indalam [[SolarSel cellsurya|photoelectricsel cellsfotoelektrik]]. InPada tahun 1967, asebuah specificfrekuensi frequencyspesifik from thedari [[emissionspektrum spectrumemisi]] of caesiumsesium-133 wasterpilih chosenuntuk todigunakan besebagai used in the definition of thedefinisi [[seconddetik]] by theoleh [[InternationalSistem SystemSatuan of UnitsInternasional]]. SinceSejak thensaat itu, caesium has beensesium widelybanyak useddigunakan indalam [[atomicjam clockatom]]s.
 
Sejak tahun 1990an, [[#Aplikasi|aplikasi terbesar unsur ini]] adalah dalam bentuk sesium format untuk [[fluida pengeboran]]. Logam ini digunakan untuk sejumlah aplikasi dalam produksi listrik, dalam bidang elektronika, dan kimia. Isotop radioaktif sesium-137 memiliki [[waktu paruh]] sekitar 30 tahun dan digunakan dalam aplikasi medis, tolok industri (''industrial gauges''), dan hidrologi. Meskipun tingkat toksisitas logam ini lemah, tetapi ia merupakan bahan berbahaya sebagai logamnya dan adanya radioisotop memberi dampak risiko kesehatan yang tinggi dalam hal pelepasan radioaktivitas.
Since the 1990s, the largest [[#Applications|application of the element]] has been as caesium formate for [[drilling fluid]]s. It has a range of applications in the production of electricity, in electronics, and in chemistry. The radioactive isotope caesium-137 has a [[half-life]] of about 30 years and is used in medical applications, industrial gauges, and hydrology. Although the element is only mildly toxic, it is a hazardous material as a metal and its radioisotopes present a high health risk in case of radioactivity releases.
 
=== Barium ===
{{main|Barium}}
'''{{unsur|Barium''' is a [[chemical element]] with the symbol '''|Ba''' and [[atomic number]] |56}}. ItUnsur isini themerupakan fifthunsur elementkelima indalam GroupGolongan 2, a soft silverysebuah [[metallogam]]lic [[alkalineLogam earthalkali metaltanah|alkali tanah]]. Bariumyang islunak neverberwarna foundkeperakan. inBarium naturetidak inpernah itsditemukan puredi formalam duedalam tobentuk itsmurni karena [[Reactivity (chemistry)|reactivityreaktivitas]]nya withdengan [[Earth'sAtmosfer atmospherebumi|airudara]]. ItsOksidanya oxidetelah isdikenal historicallysejak knownlama assebagai [[Barium hydroxidehidroksida|barytabarita]] buttetapi itoksida reactsini withbereaksi waterdengan and carbon dioxideair anddan iskarbondioksida notdan foundtidak asdijumpai asebagai mineral. TheMineral mostalami commonbarium naturallyyang occurringpaling mineralsumum are the very insolubleadalah barium sulfate,sulfat {{chem2|BaSO<sub>|4</sub>}} ([[baritebarit]]) yang sangat sukar larut, anddan [[barium carbonatekarbonat]], {{chem2|BaCO<sub>|3</sub>}} (''[[witherite]]''). Barium'sNama namebarium originatesdiambil fromdari [[Greekbahasa language|GreekYunani]] ''barys'' (βαρύς), meaningyang berarti "heavyberat", describingmenjelaskan thetentang hightingginya densitymassa ofjenis somebeberapa commonbijih barium-containing oresyang umum.
 
Barium mempunyai sedikit aplikasi industri, tetapi logam ini dalam sejarahnya digunakan sebagai ''[[getter]]'' dalam [[tabung hampa]]. Senyawa-senyawa barium memberikan nyala api menjadi hijau dan telah digunakan dalam kembang api. [[Barium sulfat]] dimanfaatkan karena massa jenisnya, ketaklarutannya, dan opasitasnya terhadap sinar-X. Ia digunakan sebagai aditif berat tak larut pada lumpur sumur pengeboran, dan dalam bentuk yang lebih murni, sebagai [[zat radiokontras]] sinar-X untuk pencitraan saluran pencernaan manusia. Senyawa barium yang dapat larut bersifat racun karena pelepasan ion barium, dan telah digunakan sebagai [[rodentisida]]. Penelitian untuk mencari manfaat baru barium terus dilakukan. Barium merupakan komponen beberapa [[YBCO]] [[superkonduktor]] "temperatur tinggi", dan elektrokeramik.
Barium has few industrial applications, but the metal has been historically used to [[getter|scavenge air]] in [[vacuum tube]]s. Barium compounds impart a green color to flames and have been used in fireworks. [[Barium sulfate]] is used for its density, insolubility, and X-ray opacity. It is used as an insoluble heavy additive to oil well drilling mud, and in purer form, as an X-ray [[radiocontrast agent]] for imaging the human gastrointestinal tract. Soluble barium compounds are poisonous due to release of the soluble barium ion, and have been used as rodenticides. New uses for barium continue to be sought. It is a component of some "high temperature" [[YBCO]][[superconductors]], and electroceramics.
 
==f-block elementsUnsur blok-f (lanthanideslantanida) ==
{{main|LanthanidesLantanida}}
The '''lanthanideLantanida''' oratau '''lanthanoidlantanoid''' ([[ChemicalTata nama nomenclature|IUPAC nomenclature]])<ref group=catatan>TheSaat currentini [[IUPAC]] recommendationlebih ismerekomendasikan thatpenggunaan the nameistilah ''lanthanoidlantanoid'' be used rather thandaripada ''lanthanidelantanida'', askarena the suffixakhiran "-ideida" islebih preferredtepat for negativeuntuk [[ion]]s whereasnegatif thesementara suffixakhiran "-oid" indicatesmenunjukkan similaritykesamaan tosifat oneunsur ofdalam the members of the containing family ofsatu elementskelompok. HoweverNamun, ''lanthanidelantanida'' is stillmasih favoredlebih inbanyak mostdipilih (~90%) scientificdalam articlesartikel andilmiah isdan currentlysaat adoptedini ondiadopsi oleh Wikipedia. InDalam theliteratur yang olderlebih literatureterdahulu, thesering namedigunakan istilah "lanthanonlantanon" was often used.</ref> seriesadalah comprisesderet theunsur yang berisi fifteenlimabelas [[metalUnsur kimia|unsur]]lic [[chemical elementlogam]]s withdengan [[atomicnomor numberatom]]s antara 57 throughdan 71, fromdari [[lanthanumlantanum]] throughhingga [[lutetiumlutesium]].<ref name="Gray"/>{{rp|240}}<ref>[http://www.britannica.com.ph/chemistry/lanthanide-369725.html Lanthanide], Encyclopædia Britannica on-line</ref><ref name="Holden2004">{{cite journal|author=Holden, Norman E. and Coplen, Tyler |date=January–February 2004|journal=Chemistry International|title=The Periodic Table of the Elements|publisher=IUPAC|volume=26|issue=1|page=8|url=http://www.iupac.org/publications/ci/2004/2601/2_holden.html|accessdate=March 23, 2010}}</ref> TheseKelimabelas fifteenunsur elementsini, alongbersama withdengan theunsur yang chemicallymirip similarsecara elementskimia [[scandiumskandium]] anddan [[yttriumitrium]], aresecara oftenkolektif collectivelysering knowndikenal as thesebagai '''[[rareunsur earthtanah elementsjarang]].'''.
 
Simbol kimia informalnya '''Ln''' digunakan dalam diskusi umum kimia lantanida. Seluruh lantanida adalah unsur [[blok-f]] kecuali satu, merujuk pada pengisian [[Kelopak elektron|kulit elektron]] 4f nya; [[lutesium]], sebuah unsur [[blok-d]], juga secara umum diakui sebagai lantanida karena kesamaan sifat kimianya dengan empatbelas unsur lainnya. Seluruh unsur lantanida membentuk kation trivalen, {{chem2|Ln|3+}}, dan [[jari-jari atom]] menurun bertahap dari lantanum ke lutesium.
The informal chemical symbol '''Ln''' is used in general discussions of lanthanide chemistry. All but one of the lanthanides are [[f-block]] elements, corresponding to the filling of the 4f [[electron shell]]; [[lutetium]], a [[d-block]] element, is also generally considered to be a lanthanide due to its chemical similarities with the other fourteen. All lanthanide elements form trivalent cations, Ln<sup>3+</sup>, whose chemistry is largely determined by the [[ionic radius]], which decreases steadily from lanthanum to lutetium.
 
{| border="1" cellpadding="4" cellspacing="0" style="margin:auto; margin:1em; background:#ffe; border:1px #aaa solid; border-collapse:collapse; font-size:95%;"
|-
![[ChemicalUnsur elementkimia]]!![[LanthanumLantanum|La]]!![[CeriumSerium|Ce]]!![[praseodymiumPraseodymium|Pr]]!![[neodymiumNeodymium|Nd]]!![[promethiumPromethium|Pm]]!![[samariumSamarium|Sm]]!![[europiumEuropium|Eu]]!![[gadoliniumGadolinium|Gd]]!![[terbiumTerbium|Tb]]!![[dysprosiumDysprosium|Dy]]!![[holmiumHolmium|Ho]]!![[erbiumErbium|Er]]!![[thuliumThulium|Tm]]!![[ytterbiumYtterbium|Yb]]!![[lutetiumLutetium|Lu]]
|-
| [[AtomicNomor numberatom]]
|57||58||59||60||61||62||63||64||65||66||67||68||69||70||71
|-
|Image|| [[FileBerkas:Lanthanum-2.jpg|50px]]||[[FileBerkas:Cerium2.jpg|50px]]||[[FileBerkas:Praseodymium.jpg|50px]]||[[FileBerkas:Neodymium2.jpg|50px]]||||[[FileBerkas:Samarium-2.jpg|50px]]||[[FileBerkas:Europium.jpg|50px]]||[[FileBerkas:Gadolinium-4.jpg|50px]]||[[FileBerkas:Terbium-2.jpg|50px]]||[[FileBerkas:Dy chips.jpg|50px]]||[[FileBerkas:Holmium2.jpg|50px]]||[[FileBerkas:Erbium-crop.jpg|50px]]||[[FileBerkas:Thulium sublimed dendritic and 1cm3 cube.jpg|50px]]||[[FileBerkas:Ytterbium-3.jpg|50px]]||[[FileBerkas:Lutetium sublimed dendritic and 1cm3 cube.jpg|50px]]
|-
|DensityMassa jenis (g/cm<sup>3</sup>)
|6.,162 ||6.,770 ||6.,77 ||7.,01 ||7.,26 ||7.,52 ||5.,244 ||7.,90 ||8.,23 ||8.,540 ||8.,79 ||9.,066 ||9.,32 ||6.,90 ||9.,841
|-
|MeltingTitik pointleleh (°C)
|920 ||795 ||935 ||1024 ||1042 ||1072 ||826 ||1312 ||1356 ||1407 ||1461 ||1529 ||1545 ||824 ||1652
|-
| Atomic [[electronKonfigurasi elektron configurationatom]]*||'''5d<sup>1</sup>'''||4f<sup>1</sup>'''5d<sup>1</sup>'''||4f<sup>3</sup>|| 4f<sup>4</sup>|| 4f<sup>5</sup>||4f<sup>6</sup>||4f<sup>7</sup>|| 4f<sup>7</sup>'''5d<sup>1</sup>'''||4f<sup>9</sup>||4f<sup>10</sup>||4f<sup>11</sup>||4f<sup>12</sup>||4f<sup>13</sup>||4f<sup>14</sup>||4f<sup>14</sup>'''5d<sup>1</sup>'''
|-
| Konfigurasi elektron Ln<sup>3+</sup> electron configuration*<ref>{{cite book|author=Walter Koechner |title=Solid-state laser engineering |url=http://books.google.com/books?id=RK3jK0XWjdMC&pg=PA47 |accessdate=15 January 2012 |year=2006 |publisher=Springer |isbn=978-0-387-29094-2|pages=47–}}</ref>||4f<sup>0</sup><ref>[http://www.chemistryexplained.com/Kr-Ma/Lanthanum.html Lanthanum – Chemistry Encyclopedia – reaction, water, elements, metal, gas, name, atom]. Chemistryexplained.com. Retrieved on 2012-01-15.</ref> || 4f<sup>1</sup>||4f<sup>2</sup>|| 4f<sup>3</sup>|| 4f<sup>4</sup>||4f<sup>5</sup>||4f<sup>6</sup>|| 4f<sup>7</sup>||4f<sup>8</sup>|| 4f<sup>9</sup>|| 4f<sup>10</sup>||4f<sup>11</sup>||4f<sup>12</sup>|| 4f<sup>13</sup>||
4f<sup>14</sup>
|-
| Jari-jari Ln<sup>3+</sup> radius ([[picometerpikometer|pm]])<ref name=Greenwood>{{Greenwood&Earnshaw|page=1233}}</ref> || 103 || 102 || 99|| 98.,3|| 97|| 95.,8|| 94.,7|| 93.,8|| 92.,3|| 91.,2|| 90.,1|| 89||88|| 86.,8|| 86.,1
|}
*Between initialAntara kulit elektron [Xe] andawal finaldan akhir 6s<sup>2</sup> electronic shells
 
Unsur lantanida adalah golongan unsur dengan [[nomor atom]] meningkat dari 57 (lantanum) hingga 71 (lutesium). Mereka dinamakan lantanida karena unsur paling ringan dalam deret ini secara kimia sama dengan [[lantanum]]. Baik lantanum dan lutesium telah dikelompokkan sebagai [[unsur golongan 3]], karena keduanya memiliki elektron valensi tunggal pada kulit d-nya. Namun, kedua unsur tersebut sering dimasukkan dalam diskusi umum apapun tentang kimia unsur-unsur lantanida.
The lanthanide elements are the group of elements with [[atomic number]] increasing from 57 (lanthanum) to 71 (lutetium). They are termed lanthanide because the lighter elements in the series are chemically similar to [[lanthanum]]. Strictly speaking, both lanthanum and lutetium have been labeled as [[group 3 element]]s, because they both have a single valence electron in the d shell. However, both elements are often included in any general discussion of the chemistry of the lanthanide elements.
 
InDalam presentations of thepenyajian [[periodictabel tableperiodik]], the [[lanthanideslantanida]] and thedan [[actinidesaktinida]] aredisajikan customarilysebagai showndua asbaris twotambahan additionaldi rowsbawah belowtabel the main body of the tableutama,<ref name="Gray" /> withdengan placeholderspenanda ortempat elseatau asatu selectedunsur singleterpilih elementdari of eachmasing-masing seriesderet (eitherbaik [[lanthanumlantanum]] oratau [[lutetiumlutesium]], and eithermaupun [[actiniumaktinium]] oratau [[lawrenciumlawrensium]], respectively) showndisajikan indalam asebuah singlesel cellpada oftabel the main tableutama, betweenantara [[barium]] anddan [[hafnium]], andserta [[radium]] anddan [[rutherfordium]], respectively. ThisKonvensi conventionini issepenuhnya entirelyhanya aberhubungan matter ofdengan [[aestheticsestetika]] anddan formattingkepraktisan practicalityformat; a rarely used [[periodictabel table (wide)|wide-formattedperiodik periodicformat tablelebar]] insertsmemasukkan thederet lanthanidelantanida anddan actinideaktinida seriespada intempat-tempat theiryang proper placessesuai, assebagai partsbagian ofdari thebaris table's(periode) sixthkeenam anddan seventhketujuh rowstabel (periods)periodik.
 
== Unsur-unsur blok-d ==
==d-block elements==
 
===Lutetium Lutesium ===
{{main|LutetiumLutesium}}
{{UnsurEja|Lutesium|{{IPAc-en|l|juː|ˈ|t|iː|ʃ|i|ə|m}} {{respell|lew|TEE|shee-əm}}|Lu|71}} Ini adalah unsur terakhir dalam deret [[lantanida]], yang, sejalan dengan [[kontraksi lantanida]], menjelaskan beberapa sifat penting lutesium, misalnya Lu memiliki kekerasan atau massa jenis tertinggi di antara lantanida. Tidak seperti lantanida lainnya, yang terletak pada [[blok-f]] tabel periodik, unsur ini terletak pada [[blok-d]]; meskipun, [[lantanum]] kadang-kadang diletakkan pada posisi lantanida blok-d. Secara kimia, lutesium memiliki ciri khas lantanida: hanya memiliki satu tingkat oksidasi yaitu +3 dalam oksida, halida, maupun senyawa lainnya. Dalam larutan akuatik, seperti senyawa lantanida akhir lainnya, senyawa lutesium terlarut membentuk sebuah kompleks dengan sembilan molekul air.
'''Lutetium''' ({{IPAc-en|l|juː|ˈ|t|iː|ʃ|i|ə|m}} {{respell|lew|TEE|shee-əm}}) is a [[chemical element]] with the symbol '''Lu''' and [[atomic number]] 71. It is the last element in the [[lanthanide]] series, which, along with the [[lanthanide contraction]], explains several important properties of lutetium, such as it having the highest hardness or density among lanthanides. Unlike other lanthanides, which lie in the [[f-block]] of the [[periodic table]], this element lies in the [[d-block]]; however, [[lanthanum]] is sometimes placed on the d-block lanthanide position. Chemically, lutetium is a typical lanthanide: its only common oxidation state is +3, seen in its oxide, halides and other compounds. In an aqueous solution, like compounds of other late lanthanides, soluble lutetium compounds form a complex with nine water molecules.
 
LutetiumLutesium wassecara independentlyterpisah discoveredditemukan inpada tahun 1907 byoleh Frenchilmuwan scientistPrancis [[Georges Urbain]], Austrian mineralogistmineralogiwan Baron [[Carl Auer von Welsbach]], anddan Americankimiawan chemistAmerika [[Charles James (chemistkimiawan)|Charles James]]. AllKetiga ofilmuwan theseini menmenemukan foundlutesium lutetiumsebagai assuatu anketakmurnian impurity in thedalam mineral [[ytterbiaiterbia]], which was previously thoughtyang tosebelumnya consistdiduga entirelyhanya ofmengandung ytterbiumiterbium. TheSengketa disputetentang onhak theprioritas prioritypenemu ofterjadi thetidak discoverylama occurredkemudian, shortlyyang after, withmana Urbain anddan von Welsbach accusingsaling eachmenuduh otherhasil ofpublikasinya publishingdipengaruhi resultsoleh influencedpenelitian by the published research of the otherrivalnya; the namingpenghargaan honorakhirnya wentjatuh topada Urbain askarena heia publishedmempublikasikan hishasilnya resultslebih earlierawal. HeIa chosememilih the namenama ''lutecium'' foruntuk theunsur newbaru elementini buttetapi inpada tahun 1949 the spelling ofejaan elementunsur 71 wasini changeddiubah tomenjadi ''lutetium''. InPada tahun 1909, the priority wasprioritas finallyakhirnya grantedjatuh tokepada Urbain anddan hisnamanya namesdiabadikan weresebagai adoptedsalah assatu officialnama onesresminya; howevernamun, the namenama ''cassiopeium'' (oratau laterterakhir menjadi ''cassiopium'') foruntuk elementunsur 71 proposedyang bydiusulkan oleh von Welsbach was used bydigunakan manyoleh Germanbanyak scientistsilmuwan untilJerman thehingga 1950s1950an. LikeSeperti otherlantanida lanthanideslainnya, lutetiumlutesium isadalah onesalah ofsatu theunsur elementsyang thatsecara traditionallytradisional weredimasukkan includeddalam in the classificationklasifikasi "[[RareLogam earthtanah elementjarang|raretanah earthjarang]]s.".
 
Lutesium langka dan mahal; konsekuensinya, ia hanya memiliki sedikit kegunaan. Misalnya, [[isotop radioaktif]] lutesium-176 digunakan dalam [[teknologi nuklir]] untuk penentuan umur [[meteorit]]. Lutesium biasanya terdapat bersamaan dengan unsur [[itrium]] dan kadang-kadang digunakan dalam [[logam paduan]] dan sebagai [[katalis]] dalam bebagai reaksi kimia.<sup>177</sup>Lu-[[DOTA-TATE]] digunakan untuk terapi radionuklida (lihat [[Kedokteran nuklir]]) pada tumor neuroendokrin.<!------------<ref>{{cite news| url=http://www.iupac.org/reports/provisional/abstract04/connelly_310804.html|title =IUPAC Provisional Recommendations for the Nomenclature of Inorganic Chemistry (online draft of an updated version of the "''Red Book''" IR 3-6)| date =2004| accessdate = 2009-06-06}}</ref>----------------->
Lutetium is rare and expensive; consequently, it has few specific uses. For example, a [[radioactive isotope]] lutetium-176 is used in [[nuclear technology]] to determine the age of [[meteorite]]s. Lutetium usually occurs in association with the element [[yttrium]] and is sometimes used in metal [[alloy]]s and as a [[catalyst]] in various chemical reactions. <sup>177</sup>Lu-[[DOTA-TATE]] is used for radionuclide therapy (see [[Nuclear medicine]]) on neuroendocrine tumours.
<!------------<ref>{{cite news| url=http://www.iupac.org/reports/provisional/abstract04/connelly_310804.html|title =IUPAC Provisional Recommendations for the Nomenclature of Inorganic Chemistry (online draft of an updated version of the "''Red Book''" IR 3-6)| date =2004| accessdate = 2009-06-06}}</ref>----------------->
 
=== Hafnium ===
{{main|Hafnium}}
'''{{UnsurEja|Hafnium''' (|{{IPAc-en|ˈ|h|æ|f|n|i|ə|m}} {{respell|HAF|nee-əm}})|Hf|72}} is aSuatu [[chemicallogam elementtransisi]] with the [[element symbol|symboltetravalen]] '''Hf'''abu-abu and [[atomic number]] 72.perak Ayang [[lustrekilau (mineralogymineralogi)|lustrousberkilau]], silvery gray, [[tetravalence|tetravalent]] [[transition metal]],kimiawi hafnium chemically resemblesmenyerupai [[zirconiumzirkonium]] anddan isditemukan found in zirconiumdalam [[mineral]]s zirkonium. ItsKeberadaannya existence wastelah [[Mendeleev'sUnsur-unsur predictedprediksi elementsMendeleev|predicteddiprediksi byoleh Dmitri Mendeleev]] inpada tahun 1869. Hafnium wasadalah the penultimateunsur [[stableisotop isotopestabil]] elementpenultimate toyang be discoveredditemukan ([[rheniumrenium]] wasdiidentifikasi identifieddua twotahun years laterkemudian). HafniumNama ishafnium namedberasal fordari ''Hafnia'', thenama [[Latin]] name foruntuk "[[Copenhagen]]", where it wastempat discoveredditemukannya.
 
Hafnium isdigunakan useddalam infilamen filamentsdan and electrodeselektrode. Beberapa proses Somefabrikasi [[semiconductorsemikonduktor]] fabricationmenggunakan processesoksidanya use its oxide foruntuk [[integratedsirkuit circuitsterpadu]] at 45&nbsp;nm anddan smallerfitur featureyang lengthslebih kecil. SomeBeberapa [[superalloysuperaloy]]s usedyang digunakan foruntuk specialaplikasi applicationskhusus containberisi hafnium inyang combinationdikombinasi withdengan [[niobium]], [[titanium]], oratau [[tungstenwolfram]].
 
Penampang [[tangkapan neutron]] hafnium yang besar ini menjadikannya bahan yang baik untuk penyerapan [[neutron]] dalam [[batang kendali]] pada [[pembangkit listrik tenaga nuklir]], tetapi pada saat yang sama mensyaratkan bahwa itu harus dihilangkan dari aloy zirkonium tahan korosi transparan neutron yang digunakan dalam reaktor nuklir.
Hafnium's large [[neutron capture]] cross-section makes it a good material for [[neutron]] absorption in [[control rod]]s in [[nuclear power plant]]s, but at the same time requires that it be removed from the neutron-transparent corrosion-resistant zirconium alloys used in nuclear reactors.
 
=== Tantalum ===
{{main|Tantalum}}
'''{{UnsurEja|Tantalum''' (|{{IPAc-en|ˈ|t|æ|n|t|ə|l|əm}} {{respell|TAN|təl-əm}}) is a [[chemical element]] with the symbol '''|Ta''' and [[atomic number]] |73.}} PreviouslySebelumnya knowndikenal assebagai ''tantalium'', thenama nameyang comesberasal fromdari ''[[Tantalus]]'', asebuah characterkarakter fromdari Greekmitologi mythologyYunani.<ref>[[Euripides]], ''[[Orestes (play)|Orestes]]''</ref> Tantalum isadalah a[[logam raretransisi]] yang langka, hardkeras, bluebiru abu-grayabu, [[lustrekilau (mineralogymineralogi)|lustrous]] [[transition metalberkilau]] thatyang issangat highlytahan corrosionterhadap resistantkorosi. ItIa isadalah partbagian ofdari thegolongan [[refractorylogam metalsrefraktori]] group, whichyang arebanyak widelydigunakan usedsebagai askomponen minor componentdalam in alloysaloy. The chemical inertnessKeinertan ofkimia tantalum makesmenjadikannya itbahan aberharga valuableuntuk substanceperalatan forlaboratorium laboratorysebagai equipment and a substitute forpengganti [[platinumplatina]], buttetapi itspenggunaan mainutamanya usesaat todayini is inadalah [[kapasitor tantalum capacitor]]s indalam peralatan [[electronicselektronika|electronicelektronik]] equipment such asseperti [[mobiletelepon phoneseluler|ponsel]]s, [[pemutar DVD player]]s, [[videosistem gamepermainan systemsvideo]] anddan [[PersonalKomputer computerpribadi|computerskomputer]].
Tantalum, alwaysselalu togetherberada withbersama thedengan chemicallyunsur similaryang kimiawinya mirip yaitu [[niobium]], occursterdapat in thedalam [[mineral]]s ''[[tantalite]]'', ''[[columbite]]'' anddan ''[[coltan]]'' (a mixsuatu ofcampuran ''columbite'' anddan ''tantalite'').
 
===Tungsten Wolfram ===
{{main|TungstenWolfram}}
'''{{UnsurAliasEja|Tungsten''' |{{IPAc-en|ˈ|t|ʌ|ŋ|s|t|ən}}, also known as '''|wolfram''' |{{IPAc-en|ˈ|w|ʊ|l|f|r|ə|m}} ({{Respell|WUUL|frəm}}), is a [[chemical element]] with the chemical symbol '''|W''' and [[atomic number]] |74.}} The wordIstilah ''tungsten'' comes fromdiambil thedari Swedishbahasa languageSwedia ''tung sten'' directlyyang translatablejika toditerjemahkan langsung artinya ''heavy stone'',<ref>{{OED|Tungsten}}</ref> thoughmeskipun thenamanya name isadalah ''volfram'' indalam Swedishbahasa toSwedia distinguishuntuk itmembedakan fromdari [[Scheelite]], indalam bahasa Swedia Swedishnama alternativelyalternatifnya namedadalah ''tungsten''.
 
A hard,Sebagai raresuatu [[metallogam]] underkeras standarddan conditionslangka whendalam uncombinedkondisi standar dan tidak dalam paduannya, tungstenwolfram isalami founddi naturallyBumi onhanya Earthdijumpai onlysebagai insenyawa chemical compoundskimia. ItWolfram waspertama identifiedkali asdiidentifikasi asebagai newunsur elementbaru pada intahun 1781, anddan firstdiisolasi isolatedsebagai aslogam auntuk metalpertama inkalinya pada tahun 1783. Its important [[oreBijih]]s includepentingnya antara lain [[wolframite]] anddan [[scheelite]]. The [[freeUnsur elementbebas]]nya ismemiliki remarkablekekuatan foryang its robustnessmengagumkan, especiallyterutama thekarena fact that it has thewolfram highestmemiliki [[meltingtitik pointlebur]] oftertinggi alldi theantara seluruh logam non-[[alloyaloy]]ed metalsdan andkedua thetertinggi seconddi highestantara ofseluruh all the elementsunsur aftersetelah [[carbonkarbon]]. AlsoMassa remarkablejenisnya isjuga itssangat hightinggi, density ofsekitar 19.,3 timeskali thatmassa ofjenis waterair, comparablesebanding to that ofdengan [[uranium]] anddan [[goldemas]], andserta much higher (aboutsekitar 1.,7 times)kali thanmassa that ofjenis [[leadtimbal]].<ref name="daintith">{{cite book |last=Daintith |first=John |title=Facts on File Dictionary of Chemistry |edition=4th |location=New York |publisher=Checkmark Books |year=2005 |isbn=0-8160-5649-8 }}</ref> TungstenWolfram withdengan minorjumlah amounts ofketakmurnian impuritieskecil issering oftenkali [[brittlerapuh]]<ref>{{cite book |title=Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds|first = Erik|last = Lassner|author2=Schubert, Wolf-Dieter | publisher = Springer|year = 1999|isbn = 978-0-306-45053-2|url = http://books.google.com/?id=foLRISkt9gcC&pg=PA20|chapter = low temperature brittleness|pages = 20–21}}</ref> anddan [[hardnessHardness|hardkeras]], makingmembuatnya itmenyulitkan difficult tountuk [[metalworkingPengolahan logam|workdiolah]]. HoweverNamun, verywolfram pureyang tungstensangat murni, thoughmeskipun stillmasih hardkeras, is morelebih [[ductilityKeuletan (fisika)|ductileulet]], and can bedan cutdapat withdipotong a hard-steeldengan [[hacksawgergaji]] baja keras.<ref name="albert">{{cite book |last=Stwertka |first=Albert |title=A Guide to the elements |url=https://archive.org/details/guidetoelements0002stwe |edition=2nd |location=New York |publisher=Oxford University Press |year=2002 |isbn=0-19-515026-0 }}</ref>
 
Dalam bentuk unsur non aloy, penggunaan utama wolfram adalah dalam aplikasi listrik. Banyak aloy wolfram yang memiliki beragam aplikasi, yang paling terkenal adalah filamen [[bola lampu]] pijar, [[tabung sinar-X]] (untuk filamen dan target), elektrode pada [[pengelasan TIG]], dan [[superaloy]]. Kekerasan dan [[massa jenis]]nya yang tinggi membuatnya digunakan untuk aplikasi militer sebagai [[proyektil]] penembus. Senyawa wolfram paling sering digunakan dalam industri sebagai [[katalis]].
The unalloyed elemental form is used mainly in electrical applications. Tungsten's many alloys have numerous applications, most notably in incandescent [[light bulb]] filaments, [[X-ray tube]]s (as both the filament and target), electrodes in [[TIG welding]], and [[superalloys]]. Tungsten's hardness and high [[density]] give it military applications in penetrating [[projectile]]s. Tungsten compounds are most often used industrially as [[catalyst]]s.
 
Wolfram adalah satu-satunya logam dari deret [[Logam transisi|transisi]] ketiga yang diketahui terdapat dalam [[biomolekul]], yang digunakan oleh segelintir bakteri. Wolfram adalah unsur terberat yang diketahui digunakan oleh organisme hidup. Wolfram terganggu dengan metabolisme [[molibdenum]] dan [[tembaga]] yang beracun pada kehidupan hewan.<ref>{{cite journal
Tungsten is the only metal from the third [[Transition metal|transition]] series that is known to occur in [[biomolecule]]s, where it is used in a few species of bacteria. It is the heaviest element known to be used by any living organism. Tungsten interferes with [[molybdenum]] and [[copper]] metabolism, and is somewhat toxic to animal life.<ref>{{cite journal
|title = The active sites of molybdenum- and tungsten-containing enzymes
|author = McMaster, J. and Enemark, John H
Baris 179 ⟶ 180:
|pmid = 9667924}}</ref><ref>{{cite journal
|title = Molybdenum and tungsten in biology
|url = https://archive.org/details/sim_trends-in-biochemical-sciences_2002-07_27_7/page/360
|author = Hille, Russ
|journal = Trends in Biochemical Sciences
Baris 188 ⟶ 190:
|pmid = 12114025}}</ref>
 
===Rhenium Renium ===
{{main|RheniumRenium}}
'''Rhenium''' ({{UnsurEja|Renium|{{IPAc-en|ˈ|r|iː|n|i|ə|m}} {{respell|REE|nee-əm}})|Re|75}} is a [[chemical element]] with the symbol '''Re''' andadalah [[atomiclogam numbertransisi]] 75.baris Itketiga isberwarna aputih silvery-whiteperak, heavyberat, third-rowtermasuk dalam [[transitionUnsur metal]] in [[groupgolongan 7 element|groupgolongan 7]] of thepada [[periodictabel tableperiodik]]. With anDengan ''estimatedestimasi'' averagekonsentrasi concentration ofhanya 1 [[Parts-Bagian per notationnotasi|partbagian per billionmilyar]] (ppb), rheniumrenium isadalah onesalah ofsatu thelogam rarestpaling elementslangka in thedalam [[Earth'skerak crustBumi]]. TheUnsur freebebasnya elementmempunyai has[[titik theleleh]] [[ListDaftar ofunsur elementsberdasarkan bytitik melting pointlebur|third-highestketiga tertinggi]] dan [[meltingtitik pointdidih]] andtertinggi highestdi boilingantara pointsemua of any elementunsur. RheniumRenium resemblesmenyerupai [[manganesemangan]] chemicallysecara andkimia isdan obtaineddiperoleh as asebagai [[by-productproduk samping]] ofdari ekstraksi bijih [[molybdenummolibdenum]] anddan [[coppertembaga]] ore's extraction and refinement. RheniumDalam showssenyawanya, inRenium itsmenunjukkan compounds a wide variety ofberbagai [[oxidationtingkat stateoksidasi]]s rangingmulai fromdari −1-1 tohingga +7.
 
DiscoveredDitemukan inpada tahun 1925, rheniumrenium was the lastadalah [[stableunsur elementstabil]] toterakhir beyang discoveredditemukan. ItNamanya wasdiambil nameddari afternama thesungai riverdi Eropa, [[Rhine]] in Europe.
 
[[NickelSuperaloy]]-based renium berbasis [[superalloysnikel]] ofdigunakan rheniumpada areruang used in the combustion chamberspembakaran, turbinebilah bladesturbin, anddan exhaustnozel nozzles ofknalpot [[jetmesin enginejet]]s, theselogam alloyspaduan ini containmengandung up tohingga 6% rheniumrenium, makingsehingga jetkonstruksi enginemesin constructionjet theadalah largestpengguna singletunggal useterbesar forunsur the elementini, withdisusul theoleh chemicalpemanfaatan industry'ssebagai catalytickatalis usesoleh beingindustri next-most importantkimia. BecauseOleh ofkarena thepermintaan lowunsur availabilityini relativerelatif tolebih demand,besar rheniumdaripada isketersediaannya, amongrenium thetermasuk mostlogam expensivepaling of metalsmahal, withdengan anharga averagerata-rata pricesekitar of approximately US$4,.575 per [[kilogram]] (US$142.,30 per troy ounce) asper of AugustAgustus 2011; it. isRenium alsojuga ofstrategis criticalbagi strategic military importancemiliter, foruntuk itsdigunakan usedalam inmesin highjet performancedan military jetroket andmiliter rocketberkinerja enginestinggi.<ref>{{cite web |url=http://www.metalprices.com/FreeSite/metals/re/re.asp |title=Rhenium |work=MetalPrices.com |publisher=MetalPrices.com |accessdate=February 2, 2012 |archive-date=2012-01-15 |archive-url=https://web.archive.org/web/20120115004912/http://www.metalprices.com/FreeSite/metals/re/re.asp |dead-url=yes }}</ref>
 
=== Osmium ===
{{main|Osmium}}
'''{{UnsurEja|Osmium''' (|{{IPAc-en|ˈ|ɒ|z|m|i|ə|m}} {{respell|OZ|mee-əm}})|Os|76}} isOsmium aadalah [[chemicallogam elementtransisi]] with the symbol '''Os''' anddalam [[atomicGolongan numberplatina|keluarga platina]] 76. It is ayang hardkeras, brittlerapuh, blue-grayberwarna orbiru blueabu-blackabu [[transitionatau metal]]biru inhitam thedan [[platinummerupakan family]]unsur andalami ispaling the densest naturally occurring elementpadat, with adengan [[densitymassa jenis]] of {{val|22.59|ul=g/cm3}} (slightlysedikit greaterlebih thantinggi that ofdaripada [[iridium]] anddan twicedua thatkali ofmassa jenis [[leadtimbal]]). ItOsmium isdijumpai founddi inalam naturesebagai as an alloyaloy, mostlyterutama indalam platinumbijih oresplatina; its [[alloylogam paduan]]snya withdengan [[platinumplatina]], [[iridium]], anddan otherlogam platinumgolongan groupplatina metalslainnya aredigunakan employeddalam inujung [[fountain pen]] tips, electricalkontak contactslistrik, anddan otheraplikasi applicationslain whereyang extrememembutuhkan durabilitydaya andtahan hardnessdan arekekerasan neededekstrem.<ref>Hammond "Osmium", C. R., p. 4-25 in {{RubberBible86th}}</ref>
 
=== Iridium ===
{{main|Iridium}}
'''{{UnsurEja|Iridium''' (|{{IPAc-en|ɨ|ˈ|r|ɪ|d|i|ə|m}} {{respell|i|RID|ee-əm}}) is|Ir|77}} theSebagai [[chemicallogam elementtransisi]] withyang [[atomicsangat number]] 77keras, and is represented by the symbol '''Ir'''. A very hardrapuh, brittle,putih silvery-whitekeperakan [[transition metal]] of thedari [[platinumGolongan groupplatina|keluarga platinum family]], iridium isadalah theunsur kedua second-[[densityMassa jenis|densestterpadat]] element (aftersetelah [[osmium]]) anddan ismerupakan thelogam mostyang paling tahan [[corrosionkorosi]]-resistant metal, evenbahkan atpada temperaturessuhu as high assetinggi 2000&nbsp;°C. Although only certainMeskipun moltengaram saltscair anddan [[halogen]]s aretertentu corrosivesaja toyang solidbersifat korosif untuk iridium padat, finely divideddebu iridium dust ishalus muchjauh morelebih reactivereaktif anddan candapat bemudah flammableterbakar.
 
Iridium wasditemuksn discoveredpada intahun 1803 amongdi insolubleantara impuritiesketakmurnian inyang naturaltak larut dalam [[platinumplatina]] alami. [[Smithson Tennant]], thepenemu primary discovererutamanya, namedmengambil thenama iridium for thedari goddessDewi [[Iris (mythologymitologi)|Iris]], personificationpersonifikasi of the rainbowpelangi, because of the strikingkarena andwarna diversegaramnya colorsyang ofmenyolok itsdan saltsberagam. Iridium isadalah [[AbundanceKelimpahan ofunsur elementsdalam inkerak Earth's crustbumi|onesalah ofsatu theunsur rarestpaling elementslangka]] in thedalam [[Crust (geology)#Earth's crust|Earth'skerak crustbumi]], withdengan annualproduksi productiondan andkonsumsi consumptiontahunan ofhanya only threetiga [[tonneton]]s. Hanya ada dua [[isotop]] alami iridium yaitu {{chemchem2|191|Ir}} anddan {{chemchem2|193|Ir}} areyang the only two naturally occurringsekaligus [[isotope]]sisotop of iridium as well as the only [[stable isotopestabil]]s; the{{chem2|193|Ir}} latterlebih ismelimpah thedaripada more abundant of the two{{chem2|191|Ir}}.
 
Senyawa iridium paling berguna adalah garam dan asamnya dengan [[klor]], meskipun iridium juga membentuk sejumlah [[Kimia organologam|senyawa organologam]] yang digunakan dalam [[katalisis]] industri, dan dalam riset. Logam iridium digunakan ketika diperlukan ketahanan terhadap korosi pada suhu tinggi, seperti pada [[busi]] ''high-end'', [[krus]] untuk rekristalisasi semikonduktor pada temperatur tinggi, dan elektrode untuk produksi klor pada [[proses kloroalkali]]. Radioisotop iridium digunakan dalam beberapa [[generator termoelektrik radioisotop]].
The most important iridium compounds in use are the salts and acids it forms with [[chlorine]], though iridium also forms a number of [[organometallic compound]]s used in industrial [[catalysis]], and in research. Iridium metal is employed when high corrosion resistance at high temperatures is needed, as in high-end [[spark plug]]s, [[crucible]]s for recrystallization of semiconductors at high temperatures, and electrodes for the production of chlorine in the [[chloralkali process]]. Iridium radioisotopes are used in some [[radioisotope thermoelectric generator]]s.
 
Iridium ditemukan dalam meteorit dengan kelimpahan jauh lebih tinggi daripada kelimpahan rata-rata di kerak bumi. Untuk alasan ini kelimpahan iridium yang sangat tinggi di lapisan tanah liat pada [[batas Cretaceous-Paleogen]] mengingatkan pada [[hipotesis Alvarez]] bahwa dampak dari benda luar angkasa masif menyebabkan kepunahan dinosaurus dan spesies lainnya 66&nbsp;juta tahun yang lalu. Diperkirakan bahwa jumlah total iridium di planet bumi jauh lebih tinggi daripada yang teramati pada batuan kerak, tetapi seperti kelompok logam platina lainnya, kepadatan yang tinggi dan [[Klasifikasi Goldschmidt|kecenderungan]] iridium untuk berikatan dengan besi menyebabkan sebagian iridium turun di bawah kerak ketika planet masih muda dan masih cair.
Iridium is found in meteorites with an abundance much higher than its average abundance in the Earth's crust. For this reason the unusually high abundance of iridium in the clay layer at the [[Cretaceous–Paleogene boundary]] gave rise to the [[Alvarez hypothesis]] that the impact of a massive extraterrestrial object caused the extinction of dinosaurs and many other species 66&nbsp;million years ago. It is thought that the total amount of iridium in the planet Earth is much higher than that observed in crustal rocks, but as with other platinum group metals, the high density and [[Goldschmidt classification#Siderophile elements|tendency]] of iridium to bond with iron caused most iridium to descend below the crust when the planet was young and still molten.
 
===Platinum Platina ===
{{main|PlatinumPlatina}}
{{UnsurEja|Platina|{{lang-en|'''Platinum'''}} ({{IPAc-en|ˈ|p|l|æ|t|i-|n|ə|m}}) is a [[chemical element]] with the [[chemical symbol]] '''|Pt''' and an [[atomic number]] of |78.}}
 
ItsNamanya nameberasal isdari derivedistilah from the Spanish termSpanyol ''platina'', whichyang issecara literallyharfiah translatedditerjemahkan intomenjadi "littleperak silverkecil".<ref>[http://www.britannica.com/EBchecked/topic/464081/platinum-Pt "platinum (Pt)."] Encyclopædia Britannica Online. Encyclopædia Britannica Inc., 2012. Web. 24 April 2012</ref><ref>{{OEtymD|platinum}}</ref><!--source for "platina del Pinto"<ref>{{cite book|last=Woods|first=Ian|title=The Elements: Platinum|url=https://archive.org/details/platinum0000wood|publisher=Benchmark Books|year=2004|series=The Elements|isbn=978-0-7614-1550-3}}</ref>--> ItIni isadalah a[[logam transisi]] [[densityMassa jenis|densepadat]], [[malleabilityKeuletan (fisika)|malleabledapat ditempa]], [[ductilityKeuletan (fisika)|ductileulet]], [[preciousLogam metalberharga|preciousberharga]], graydan berwarna abu-whiteabu [[transitionputih metal]].
 
Platina adalah anggota unsur [[golongan platina]] dan unsur dalam [[Unsur golongan 10|golongan 10]] pada [[tabel periodik]]. Ia memiliki enam [[isotop]] alami. Logam ini adalah salah satu unsur [[Kelimpahan unsur dalam kerak bumi|langka di kerak bumi]] dengan kelimpahan rata-rata sekitar 5&nbsp;[[mikrogram|μg]]/kg. Ia terdapat dalam beberapa bijih [[nikel]] dan [[tembaga]] bersama dengan beberapa deposit [[Mineral unsur alami|alami]], sebagian besar di [[Afrika Selatan]], yang menyumbang 80% dari produksi dunia.
Platinum has six naturally occurring [[isotopes]]. It is one of the [[Abundance of elements in Earth's crust|rarest elements in the Earth's crust]] and has an average abundance of approximately 5&nbsp;μg/kg. It is the [[Reactivity series|least reactive metal]]. It occurs in some [[nickel]] and [[copper]] ores along with some native deposits, mostly in [[South Africa]], which accounts for 80% of the world production.
 
Platina adalah [[Deret reaktivitas|logam yang paling kurang reaktif]]. Daya tahannya yang mengagumkan terhadap [[korosi]], bahkan pada suhu tinggi, membuatnya dinobatkan sebagai [[logam mulia]]. Konsekuensinya, platina sering ditemukan sebagai unsur platina alami. Oleh karena ia terdapat secara alami dalam [[alluvium|pasir aluvium]] di berbagai sungai, maka ia digunakan pertama kali oleh penduduk asli Amerika Selatan [[pra-Kolombia]] untuk membuat artefak. Tulisan Eropa merujuk pada abad ke-16, tetapi laporan [[Antonio de Ulloa]] yang mempublikasikan logam baru di [[Kolombia]] pada tahun 1748 menjadi objek penelitian para ilmuwan.
As a member of the [[platinum group]] of elements, as well as of the [[group 10 element|group 10]] of the [[periodic table of elements]], platinum is generally non-reactive. It exhibits a remarkable resistance to corrosion, even at high temperatures, and as such is considered a [[noble metal]]. As a result, platinum is often found chemically uncombined as native platinum. Because it occurs naturally in the [[alluvium|alluvial sands]] of various rivers, it was first used by [[pre-Columbian]] South American natives to produce artifacts. It was referenced in European writings as early as 16th century, but it was not until [[Antonio de Ulloa]] published a report on a new metal of [[Colombia]]n origin in 1748 that it became investigated by scientists.
 
PlatinumPlatina isdigunakan used indalam [[catalyticpengubah converterkatalitik]]s, laboratoryperalatan equipmentlaboratorium, kontak [[electriclistrik]]al contacts anddan [[electrodeelektrode]]s, [[platinumSensor resistancesuhu|termometer resistensi thermometerplatina]]s, peralatan [[dentistrykedokteran gigi]] equipment, and jewelry. Because only a few hundred tonnes are produced annually, it is a scarce material, and is highly valuable and is a majordan [[List of traded commodities#Precious metals|precious metal commodityperhiasan]]. BeingOleh akarena termasuk [[heavy metal (chemistry)|heavylogam metalberat]], itplatina leadsmemiliki tomasalah healthkesehatan issuesjika uponterpapar exposure to its saltsgaramnya, buttetapi duekarena toketahanannya itsterhadap corrosion resistancekorosi, it isplatina nottidak asberacun toxicseperti asbeberapa somelogam metalslainnya.<ref>{{cite web |url= http://www.euro.who.int/__data/assets/pdf_file/0015/123081/AQG2ndEd_6_11Platinum.PDF|title=Air Quality Guidelines|edition=Second|chapter=Chapter 6.11 Platinum&#124;|publisher=WHO Regional Office for Europe, Copenhagen, Denmark|date= 2000 }}</ref> ItsSenyawa compounds,yang mostmengandung notablyplatina, seperti ''[[cisplatinsisplatin]]'', are''[[oksaliplatin]]'' dan ''[[karboplatin]]'', applieddigunakan indalam [[chemotherapykemoterapi]] againstuntuk certainmelawan typeskanker ofjenis cancertertentu.<ref>{{cite journal | pmid = 20593091 | yeardate = 2010 | last1 = Wheate | first1 = NJ | last2 = Walker | first2 = S | last3 = Craig | first3 = GE | last4 = Oun | first4 = R | title = The status of platinum anticancer drugs in the clinic and in clinical trials | volume = 39 | issue = 35 | pages = 8113–27 | doi = 10.1039/C0DT00292E | journal = Dalton transactions (Cambridge, England : 2003)}}</ref>
 
===Gold Emas ===
{{main|GoldEmas}}
{{UnsurEja|Emas|{{lang-en|'''Gold'''}} {{IPAc-en|ˈ|ɡ|oʊ|l|d}}|Au|79}} isEmas aadalah dense,[[logam soft, shiny, malleable and ductile metal. It is atransisi]] [[chemicalMassa elementjenis|padat]], withlunak, theberkilau, symbol[[Keuletan '''Au'''(fisika)|mudah anddibentuk]], dan [[atomicKeuletan number(fisika)|ulet]] 79.
 
Emas murni memiliki warna kuning cerah dan kilau klasik yang menarik, yang tetap terjaga tanpa mengalami oksidasi di udara atau air. Kimiawinya, emas adalah [[logam transisi]] dan merupakan [[unsur golongan 11]]. Ini adalah salah satu unsur kimia padat yang kurang reaktif dalam kondisi standar. Oleh karena itu logam ini sering berada di alam dalam bentuk bebas (asli), sebagai [[Bongkah emas|bongkahan]] atau butiran dalam batuan, dalam [[Pembuluh (geologi)|pembuluh]] dan [[Alluvium|deposit aluvial]]. Emas terdapat juga pada mineral sebagai senyawa emas, biasanya dengan [[telurium]], tetapi kondisi ini kurang umum.
Pure gold has a bright yellow color and luster traditionally considered attractive, which it maintains without oxidizing in air or water. Chemically, gold is a [[transition metal]] and a [[group 11 element]]. It is one of the least reactive chemical elements solid under standard conditions. The metal therefore occurs often in free elemental (native) form, as [[gold nugget|nuggets]] or grains in rocks, in [[vein (geology)|veins]] and in [[alluvial deposit]]s. Less commonly, it occurs in minerals as gold compounds, usually with [[tellurium]].
 
GoldEmas resistsdapat attacksbertahan bydari individualserangan acidsasam individu, but it can betetapi dissolveddapat bydilarutkan theoleh [[aqua regia]] (asam nitro-hydrochloric acidklorida), so nameddinamakan becausedemikian itkarena dissolvesmelarutkan goldemas. GoldEmas alsojuga dissolveslarut indalam alkaline solutions oflarutan [[cyanidesianida]] alkalis, which haveyang beentelah useddigunakan indi miningpertambangan. GoldEmas dissolveslarut indalam [[mercury (element)|mercuryraksa]], formingmembentuk paduan [[amalgam (chemistry)|amalgam]] alloys. GoldEmas istidak insolublelarut indalam [[nitricasam acidnitrat]], whichyang dissolvesmelarutkan [[silverperak]] anddan [[baselogam metaldasar]]s, asifat propertyyang thattelah haslama longdigunakan beenuntuk usedmengkonfirmasi tokeberadaan confirmemas thedalam presence of gold in itemsbahan, givingsehingga risemencuatkan to the termistilah ''the [[acidUji testasam (goldemas)|aciduji testasam]].''.
 
Emas telah menjadi [[logam berharga]] dan sangat dicari untuk [[koin]], perhiasan, dan seni lainnya sejak jauh sebelum awal [[sejarah tercatat]]. [[Standar emas]] telah menjadi dasar umum untuk [[kebijakan moneter]] sepanjang sejarah manusia, kemudian yang digantikan oleh [[mata uang fiat]] yang dimulai pada tahun 1930-an. [[Sertifikat emas]] dan mata uang [[koin emas]] terakhir dikeluarkan di Amerika Serikat pada tahun 1932. Di Eropa, sebagian besar negara meninggalkan standar emas dengan dimulainya [[Perang Dunia I]] pada 1914 dan, dengan utang perang yang besar, gagal kembali ke emas sebagai media pertukaran.
Gold has been a valuable and highly sought-after [[precious metal]] for [[coin]]age, jewelry, and other arts since long before the beginning of [[recorded history]]. [[Gold standard]]s have been a common basis for [[monetary policy|monetary policies]] throughout human history{{Citation needed|date=April 2012}}, later being supplanted by [[fiat currency]] starting in the 1930s. The last [[gold certificate]] and [[gold coin]] currencies were issued in the U.S. in 1932. In Europe, most countries left the gold standard with the start of [[World War I]] in 1914 and, with huge war debts, failed to return to gold as a medium of exchange.
 
ASebanyak total of 165,.000 [[tonneton]]s ofemas goldtelah haveditambang beendalam minedsejarah inumat human historymanusia, as ofper 2009.<ref name="World Gold Council FAQ">[http://www.gold.org/faq/answer/76/how_much_gold_has_been_mined/ World Gold Council FAQ]. www.gold.org</ref> ThisSecara iskasar roughlyini equivalentsetara todengan 5.,3 billionmiliar [[troy ounce]]s oratau, in termsdalam ofhitungan volume, aboutsekitar 8500 m<sup>3</sup>, .<!--or a [[cube]] 20.4 m on a side.--> The world consumption of new goldKonsumsi producedemas isdunia aboutsekitar 50% inuntuk jewelryperhiasan, 40% inuntuk investmentsinvestasi, anddan 10% inuntuk industryindustri.<ref name='oil-price.com-worlds-gold-consumption 2011'>{{cite news|first = Andy |last = Soos|title = Gold Mining Boom Increasing Mercury Pollution Risk|date = 2011-01-06|publisher = Oilprice.com|url = http://oilprice.com/Metals/Gold/Gold-Mining-Boom-Increasing-Mercury-Pollution-Risk.html|work = Advanced Media Solutions, Inc.|accessdate = 2011-03-26}}</ref>
 
Selain fungsi luas moneter dan simbolis, emas memiliki banyak kegunaan praktis dalam bidang [[kedokteran gigi]], [[elektronika]], dan bidang lainnya. [[Keuletan (fisika)|Kelenturannya]] yang tinggi, [[Keuletan (fisika)|keuletannya]], ketahanan terhadap korosi dan terhadap sebagian besar reaksi kimia yang lain, serta konduktivitas listrik yang prima menyebabkan banyak kegunaan emas, termasuk [[kabel listrik]], produksi kaca berwarna dan bahkan [[daun emas]] yang dapat dimakan.
Besides its widespread monetary and symbolic functions, gold has many practical uses in [[dentistry]], [[electronics]], and other fields. Its high [[malleability]], [[ductility]], resistance to corrosion and most other chemical reactions, and conductivity of electricity led to many uses of gold, including [[electric wiring]], colored-glass production and even [[gold leaf]] eating.
 
ItTelah hasdiklaim beenbahwa claimedsebagian thatbesar mostemas ofbumi theterletak Earth'spada goldinti liesbumi, atkepadatan itslogam core,ini theyang metal'stinggi highmembuatnya densitytenggelam havingdi madesana itdi sinkmasa there in themuda planet's youthini. Hampir Virtuallysemua allemas ofyang thetelah goldditemukan thatoleh mankindmanusia hasdianggap discoveredtelah isdisimpan consideredkemudian to have been deposited later byoleh [[meteoritesmeteorit]] whichyang containedberisi theunsur elementini. Hal Thisini supposedlyseharusnya explainsmenjelaskan whymengapa, indalam masa prehistoryprasejarah, goldemas appearedmuncul assebagai nuggetsbongkahan ondi the earth'spermukaan surfacebumi.<ref>{{cite news| url=http://www.bbc.co.uk/news/science-environment-14827624 | work=BBC News | title=Meteorites delivered gold to Earth | date=2011-09-08}}</ref><ref>{{cite|url=http://www.sciencedaily.com/releases/2011/09/110907132044.htm|title=Where does all Earth's gold come from? Precious metals the result of meteorite bombardment, rock analysis finds|website=ScienceDaily|date=2011-09-09}}</ref><ref>{{cite|url=http://www.ees.rochester.edu/ees119/reading2.pdf|website=rochester.edu|title=The Origin of Gold in South Africa}}</ref><ref>{{cite news| url=http://www.huffingtonpost.com/2011/09/10/meteor-shower-gold_n_955448.html | work=Huffington Post | title=Meteor Shower Rained Gold On Ancient Earth | date=2011-09-10}}</ref><ref>{{cite|url=http://www.nature.com/nature/journal/v477/n7363/full/nature10399.html#/access|title=The tungsten isotopic composition of the Earth’s mantle before the terminal bombardment|first1=Matthias|last1=Willbold|first2=Tim|last2=Elliott|first3=Stephen|last3=Moorbath|journal=Nature|volume=477|pages=195–198|date=08 September 2011|doi=10.1038/nature10399}}</ref>
 
===Mercury Raksa ===
{{main|Mercury (element)Raksa}}
'''Mercury'''{{Unsur|Raksa|Hg|80}} isIa ajuga [[chemical element]] with thedikenal symbolsebagai '''Hg''quicksilver' and [[atomic number]] 80. It is also known as '''quicksilver'''<!--<ref>{{cite web|url=http://dictionary.reference.com/browse/quicksilver|title=quicksilver definition |accessdate=13 October 2008|publisher=Dictionary.com Unabridged (v 1.1)}}</ref>---> oratau '''''hydrargyrum''''' ({{lang-gr| < Greek}} "[[Wiktionary:en:hydr-|hydr-]]" ''waterair'' anddan "[[Wiktionary:en:άργυρος|argyros]]" ''silverperak''). ASebagai heavy, silveryunsur [[dblok-blockd]] elementyang berat, mercurykeperakan, israksa theadalah onlysatu-satunya metallogam thatyang isberbentuk liquidcair atpada [[standardtemperatur conditionsdan fortekanan temperature and pressurestandar]]; theunsur onlylainnya otheryang elementberwujud thatcair ispada liquidkondisi underini these conditions isadalah [[brominebrom]], though metalsmeskipun suchlogam asseperti [[caesiumsesium]], [[franciumfransium]], [[galliumgalium]], anddan [[rubidium]] meltmeleleh justtepat abovedi roomatas temperaturesuhu kamar. WithDengan atitik [[freezingbeku point]] of −38.-38,83&nbsp;°C anddan [[boilingtitik point]] ofdidih 356.,73&nbsp;°C, mercuryraksa hasmerupakan onesalah ofsatu thelogam narrowestdengan rangesrentang ofbentuk itscair liquidyang statesempit ofdibandingkan anylogam metalapapun.<ref>{{cite web|url=http://antoine.frostburg.edu/chem/senese/101/inorganic/faq/why-is-mercury-liquid.shtml| title=Why is mercury a liquid at STP?| accessdate=May 1, 2007| publisher=General Chemistry Online at Frostburg State University| author=Senese, F}}</ref><ref name="Norrby">{{cite journal|author=Norrby, L.J.|title=Why is mercury liquid? Or, why do relativistic effects not get into chemistry textbooks?|url=https://archive.org/details/sim_journal-of-chemical-education_1991-02_68_2/page/110| journal= Journal of Chemical Education|volume=68|issue=2|page=110 |year=1991|doi=10.1021/ed068p110|bibcode=1991JChEd..68..110N}}</ref><ref>{{RubberBible86th|pages=4.125–4.126}}</ref>
 
Merkuri terdapat dalam deposit di seluruh dunia sebagian besar sebagai [[sinabar]] ({{lang-en|[[:en:cinnabar|cinnabar]]}}) alias [[merkuri sulfida]]. Pigmen merah [[vermilion]] adalah yang paling banyak diperoleh dari reduksi sinabar. Debu sinabar sangat beracun jika tertelan maupun terhirup. [[Keracunan raksa]] dapat juga disebabkan dari paparan raksa terlarut dalam air (seperti [[merkuri klorida]] atau [[metil merkuri]]), menghirup uap merkuri, atau menyantap hidangan laut yang terkontaminasi dengan raksa.
Mercury occurs in deposits throughout the world mostly as [[cinnabar]] ([[mercuric sulfide]]). The red pigment [[vermilion]] is mostly obtained by reduction from cinnabar. Cinnabar is highly toxic by ingestion or inhalation of the dust. [[Mercury poisoning]] can also result from exposure to water-soluble forms of mercury (such as [[mercuric chloride]] or [[methylmercury]]), inhalation of mercury vapor, or eating seafood contaminated with mercury.
 
Raksa digunakan dalam [[termometer]], [[barometer]], [[manometer]], [[sfigmomanometer]], [[katup apung]] ({{lang-en|[[:en:Ballcock|ballcock]]}}), [[saklar raksa]], dan peralatan lainnya meskipun kekhawatiran tentang toksisitas unsur ini menyebabkan termometer dan sfigmomanometer raksa telah disingkirkan dari lingkungan klinis dan diganti dengan yang berisi [[alkohol]], berisi [[galinstan]], digital, atau instrumentasi berbasis [[termistor]]. Aplikasi penelitian ilmiah masih menggunakan raksa dan dalam bahan [[amalgam]] untuk [[restorasi gigi]]. Raksa digunakan dalam penerangan: medan listrik dilewatkan melalui uap raksa dalam tabung fosfor menghasilkan [[Ultraungu|sinar ultraungu]] gelombang pendek yang kemudian menyebabkan fosfor [[Fluoresens|berpendar]], menghasilkan sinar tampak.
Mercury is used in [[thermometer]]s, [[barometer]]s, [[manometer]]s, [[sphygmomanometer]]s, [[float valve]]s, [[mercury switch]]es, and other devices though concerns about the element's toxicity have led to mercury thermometers and sphygmomanometers being largely phased out in clinical environments in favor of [[alcohol]]-filled, [[galinstan]]-filled, digital, or [[thermistor]]-based instruments. It remains in use in scientific research applications and in [[amalgam (dentistry)|amalgam]] material for [[dental restoration]]. It is used in lighting: electricity passed through mercury vapor in a phosphor tube produces short-wave [[ultraviolet light]] which then causes the phosphor to [[fluoresce]], making visible light.
 
== Unsur-unsur blok-p ==
==p-block elements==
 
===Thallium Talium ===
{{main|ThalliumTalium}}
{{UnsurEja|Talium|{{lang-en|'''Thallium'''}} ({{IPAc-en|ˈ|θ|æ|l|i|ə|m}} {{respell|THAL|ee-əm}}) is a chemical element with the symbol '''|Tl'''|81}} and[[Logam atomicpasca numbertransisi]] 81.abu-abu Thisyang softlembut gray [[other metal]]ini resemblesmenyerupai [[tintimah]] buttetapi discolorsberubah whenwarna exposedbila toterkena airudara. TheDua twoahli chemistskimia [[William Crookes]] anddan [[Claude-Auguste Lamy]] discoveredmenemukan thalliumtalium independentlysecara interpisah pada tahun 1861 bydengan themetode newlyyang developedbaru method ofdikembangkan, [[Atomic emission spectroscopy#FlameSpektroskopi emissionemisi spectroscopyatom|flamespektroskopi spectroscopynyala]]. BothKeduanya discoveredmenemukan theunsur newbaru elementdalam inresidu residues ofproduksi [[sulfuricasam acidsulfat]] production.
 
ApproximatelySekitar 60–70% ofdari thalliumproduksi productiontalium isdigunakan used in thedalam [[electronicsindustri industryelektronik]], anddan thesisanya remainderdigunakan is used in thedalam [[pharmaceuticalindustri industryfarmasi]] and indan [[glassKaca|glassmanufakturing manufacturingkaca]].<ref name="sl2001">{{cite web|title=Chemical fact sheet&nbsp;— Thallium|publisher=''Spectrum Laboratories'' |date=April 2001 |url=http://www.speclab.com/elements/thallium.htm|accessdate=2008-02-02|archive-date=2008-02-21|archive-url=https://web.archive.org/web/20080221222321/http://www.speclab.com/elements/thallium.htm|dead-url=yes}}</ref> ItLogam isini alsojuga useddigunakan indalam [[infrareddetektor detectorinframerah]]s. ThalliumTalium is highlysangat [[toxicToksik|beracun]] anddan wasdigunakan used indalam [[rat poisonrodentisida]]s andserta [[insecticideinsektisida]]s. ItsPenggunaannya usetelah hasdikurangi beenatau reduceddihilangkan ordi eliminatedbanyak innegara manykarena countriestoksisitas becausenon of its nonselective toxicityselektifnya. BecauseOleh ofkarena itsdigunakan use foruntuk [[murderpembunuhan]], thalliumtalium hastelah gainedmemperoleh the nicknamesjulukan "TheRacun Poisoner'spara PoisonPeracun" anddan "InheritanceSerbuk PowderWarisan" (alongsidebersama [[arsenicarsen]]).<ref>{{cite book|title = The Boron Elements: Boron, Aluminum, Gallium, Indium, Thallium|url = https://archive.org/details/boronelementsbor0000hasa| page = [https://archive.org/details/boronelementsbor0000hasa/page/14 14]|first =Heather|last = Hasan|year = 2009| isbn = 978-1-4358-5333-1|publisher = Rosen Publishing Group}}</ref>
 
===Lead Timbal ===
{{main|LeadTimbal}}
{{UnsurEja|Timbal|{{lang-en|'''Lead'''}} {{IPAc-en|ˈ|l|ɛ|d}}|Pb|82}} Logam dari [[golongan karbon]] ini lunak, [[Keuletan (fisika)|dapat ditempa]] dan termasuk dalam [[logam pasca transisi]]. Timbal juga merupakan salah satu [[logam berat]]. Logam timbal memiliki warna putih kebiruan saat baru dipotong, tetapi segera memudar menjadi warna abu-abu kusam saat terkena udara. Timbal memiliki kilau krom perak mengkilap ketika meleleh menjadi cairan.
'''Lead''' {{IPAc-en|ˈ|l|ɛ|d}} is a main-group [[Chemical element|element]] in the [[carbon group]] with the symbol '''Pb''' (from {{lang-la|plumbum}}) and [[atomic number]] 82. Lead is a soft, [[malleable]] [[other metal]]. It is also counted as one of the [[heavy metal (chemistry)|heavy metal]]s. Metallic lead has a bluish-white color after being freshly cut, but it soon tarnishes to a dull grayish color when exposed to air. Lead has a shiny chrome-silver luster when it is melted into a liquid.
 
LeadTimbal isdigunakan useddalam inkonstruksi building constructionbangunan, [[lead–acidbaterai battery|leadtimbal-acid batteriesasam]], [[bulletpeluru]]s anddan [[leadpeluru shot|shotpelet]]s, weightsanak timbangan, assebagai partbagian ofdari [[solder]]s, [[pewterpyuter]]s, [[fusiblepaduan alloyyang dapat lebur]]s and({{lang-en|fusible asalloy}}) adan sebagai [[radiationProteksi radiasi|perisai shieldradiasi]]. LeadTimbal has the highestmemiliki [[atomicnomor numberatom]] of alltertinggi ofdari thesemua [[stableDaftar elementunsur berdasarkan kestabilan isotop|unsur stabil]]s, althoughmeskipun theunsur nextberikutnya higheryang elementlebih tinggi, [[bismuthbismut]], has amemiliki [[half-lifewaktu paruh]] thatyang issangat so longpanjang (much longer thanlebih thelama agedari ofusia thealam universesemesta) thatyang itdapat candianggap be considered stablestabil. Its fourEmpat stableisotop isotopesstabilnya havememiliki 82 [[proton]]s, asuatu [[magicAngka numberajaib (physicsfisika)|magicangka numberajaib]] in thedalam [[nuclearmodel shellkulit modelnuklir]] ofsuatu [[atomicinti nucleiatom]].
 
Timbal, pada tingkat paparan tertentu, adalah zat beracun untuk hewan serta untuk manusia. Ia merusak [[sistem saraf]] dan menyebabkan gangguan [[otak]]. Timbal berlebih juga menyebabkan kelainan darah pada mamalia. Seperti unsur [[raksa]], logam berat lainnya, timbal adalah [[neurotoksin]] yang terakumulasi baik di jaringan lunak dan tulang. [[Keracunan timbal]] telah didokumentasikan sejak [[Romawi kuno]], [[Yunani kuno]], dan [[Sejarah Tiongkok|China kuno]].
Lead, at certain exposure levels, is a poisonous substance to animals as well as for human beings. It damages the [[nervous system]] and causes [[brain]] disorders. Excessive lead also causes blood disorders in mammals. Like the element [[mercury (element)|mercury]], another heavy metal, lead is a [[neurotoxin]] that accumulates both in soft tissues and the bones. [[Lead poisoning]] has been documented from [[ancient Rome]], [[ancient Greece]], and [[History of China#Ancient China|ancient China]].
 
===Bismuth Bismut ===
{{main|Bismuth}}
'''Bismuth''' ({{UnsurEja|Bismut|{{IPAc-en|ˈ|b|ɪ|z|m|ə|θ}} {{respell|BIZ|məth}}) is a [[chemical element]] with symbol '''|Bi''' and [[atomic number]] |83.}} BismuthBismut, alogam trivalentpasca [[othertransisi metal]]trivalen, chemicallykimiawinya resemblesmenyerupai [[arsenicarsen]] anddan [[antimonyantimon]]. ElementalUnsur bismuthbismut maydapat occurterjadi naturallysecara uncombinedalami dalam bentuk bebas, althoughmeskipun itssulfida sulfidedan andbentuk oxideoksidanya formmerupakan importantbijih commercialkomersial oresyang penting. The [[freeUnsur elementbebas]] isnya 86% as dense assepadat [[leadtimbal]]. It is aIni brittleadalah metallogam withrapuh adengan silverywarna whiteputih colorkeperakan whensaat newlybaru madedibuat, buttetapi oftensering seenterlihat indi airudara withdengan asemburat pinkmerah tingemuda owingkarena tooksida the surface oxidepermukaannya. BismuthLogam metalbismut hastelah beendikenal knownsejak fromzaman ancient timeskuno, althoughmeskipun untilsampai theabad 18thke-18 centurymasih itsering wasdibingungkan oftendengan confusedtimbal withdan lead and tintimah, whichyang eachmasing-masing havememiliki somebeberapa ofsifat thefisik metal's bulk physicalmassal propertieslogam. TheEtimologinya etymologytidak ispasti uncertaintetapi butmungkin possiblyberasal comesdari frombahasa ArabicArab "bi ismid" meaningyang havingberarti thememiliki properties ofsifat-sifat antimonyantimon<ref>[http://webmineral.com/data/Bismuth.shtml Bismuth]. Web Mineral. Retrieved on 2011-12-17.</ref> oratau Germanbahasa wordsJerman ''weisse masse'' oratau ''wismuth'' yang berarti meaning''whitemassa mass.putih''.<ref name="arizona1">{{cite book|editor=Anthony, John W.; Bideaux, Richard A.; Bladh, Kenneth W. and Nichols, Monte C. |title=Handbook of Mineralogy|publisher=Mineralogical Society of America |place=Chantilly, VA, US |volume=I (Elements, Sulfides, Sulfosalts) |url=http://rruff.geo.arizona.edu/doclib/hom/bismuth.pdf|format=PDF |chapter=Bismuth |accessdate=December 5, 2011 |isbn=0-9622097-0-8 }}</ref>
 
Bismut secara alami paling [[Diamagnetisme|diamagnetik]] di antara semua logam, dan hanya [[raksa]] yang memiliki [[konduktivitas termal]] lebih rendah.
Bismuth is the most naturally [[Diamagnetism|diamagnetic]] of all metals, and only [[mercury (element)|mercury]] has a lower [[thermal conductivity]].
 
BismuthBismut hassecara classicallyklasik beentelah considereddianggap tosebagai beunsur thealami heaviestterberat naturallyyang occurring stable elementstabil, in termsdalam ofhal atomicmassa massatom. RecentlyBagaimanapun, however, it hasbaru-baru beenini foundtelah toditemukan bebahwa verybismut slightlysedikit radioactiveradioaktif: itshanya onlyisotop primordial isotope [[bismuth-209]] decaysyang viameluruh melalui [[alphapeluruhan decayalfa]] intomenjadi [[thalliumtalium-205]] with adengan [[half-lifewaktu paruh]] oflebih moredari than asatu [[1000000000 (numberangka)|billionmiliar]] timeskali the estimatedperkiraan [[age ofusia thealam universesemesta]].<ref>{{cite news| url=http://physicsweb.org/articles/news/7/4/16| title=Bismuth breaks half-life record for alpha decay| date=2003-04-23| publisher=Physicsweb| first=Belle| last= Dumé}}</ref>
 
Senyawa bismuth (diperhitungkan sekitar setengah dari produksi bismut) digunakan dalam [[kosmetika]], pigmen, dan beberapa obat-obatan. Bismut memiliki [[toksisitas]] sangat rendah untuk logam berat. Oleh karena toksisitas [[timbal]] telah menjadi lebih jelas dalam beberapa tahun terakhir, paduan menggunakan logam bismut (saat ini sekitar sepertiga dari produksi bismut), sebagai pengganti timbal, telah menjadi bagian yang menyebabkan peningkatan kepentingan bismut untuk komersial.
Bismuth compounds (accounting for about half the production of bismuth) are used in [[cosmetics]], pigments, and a few pharmaceuticals. Bismuth has unusually low[[toxicity]] for a heavy metal. As the toxicity of [[lead]] has become more apparent in recent years, alloy uses for bismuth metal (presently about a third of bismuth production), as a replacement for lead, have become an increasing part of bismuth's commercial importance.
 
=== Polonium ===
{{main|Polonium}}
'''{{UnsurEja|Polonium''' (|{{IPAc-en|p|oʊ|ˈ|l|oʊ|n|i|ə|m}} {{respell|po|LOH|nee-əm}}) is a [[chemical element]] with the symbol '''|Po'''|84}} andUnsur [[atomicini number]] 84,ditemukan discoveredpada intahun 1898 byoleh [[Marie Curie|Marie Skłodowska-Curie]] anddan [[Pierre Curie]]. ASebagai rareunsur andyang highlylangka dan sangat [[radioactiveradioaktif]] element, kimiawi polonium ismirip chemically similar todengan [[bismuthbismut]]<ref>{{cite web| url = http://hyperphysics.phy-astr.gsu.edu/hbase/pertab/Po.html |title = Polonium| accessdate = 2009-05-05}}</ref> anddan [[telluriumtelurium]], and itdan occursterdapat indalam [[uraniumbijih]] [[oreuranium]]s. Polonium hastelah beendipelajari studieduntuk forkemungkinan possibledigunakan usedalam in heatingpemanasan [[spacecraftwahana antariksa]]. AsOleh itkarena issifatnya unstableyang tidak stabil, allseluruh [[isotopes ofisotop polonium]] areadalah radioactiveradioaktif. ThereTerdapat isketidaksepakatan disagreementmengenai aspenempatan topolonium, whetherantara polonium ismasuk akelompok [[post-transitionlogam metalpasca transisi]] oratau polonium masuk kelompok [[metalloidmetaloid]].<ref>{{cite journal| doi=10.1021/ed100308w |title = Polonium and Astatine Are Not Semimetals| url=https://archive.org/details/sim_journal-of-chemical-education_2010-08_87_8/page/783 |journal= Journal of Chemical Education| year=2010| last1=Hawkes| first1=Stephen J.| volume=87| issue=8| pages=783 |bibcode = 2010JChEd..87..783H }}</ref><ref>{{cite web |url=http://periodic.lanl.gov/metal.shtml |title=Characterizing the Elements |author=<!--Staff writer(s); no by-line.--> |work= |publisher=[[Los Alamos National Laboratory]] |accessdate=4 March 2013}}</ref>
 
===Astatine Astatin ===
{{main|AstatineAstatin}}
'''AstatineAstatin''' ({{IPAc-en|ˈ|æ|s|t|ə|t|iː|n}} {{respell|AS|tə-teen}} oratau {{IPAc-en|ˈ|æ|s|t|ə|t|ɪ|n}} {{respell|AS|tə-tin}}) isadalah asuatu [[radioactiveunsur kimia]] [[chemical elementradioaktif]] with thedengan symbollambang '''At''' anddan [[atomicnomor numberatom]] 85. ItAstatin occursterdapat ondi theBumi Earthhanya onlysebagai ashasil thepeluruhan resultdari ofunsur-unsur decayyang oflebih heavier elementsberat, andkemudian meluruh decayskembali awaydengan rapidlycepat, sosehingga muchsangat lesssedikit isyang knowndiketahui abouttentang thisunsur elementini thandaripada itsunsur-unsur di atasnya dalam uppergolongan neighborsyang insama thepada [[periodictabel tableperiodik]]. EarlierStudi studiesawal havetelah shownmenunjukkan thisbahwa elementunsur followsini periodicmengikuti trendstren periodik, being the heaviest knownmerupakan [[halogen]] paling berat yang dikenal, withdengan [[meltingtitik point|meltingleleh]] anddan [[boilingTitik pointdidih|didih]]s beinglebih highertinggi thandaripada thosehalogen ofyang lighterlebih halogensringan.
 
Sampai saat ini sebagian besar karakteristik kimia astatin disimpulkan dari perbandingan dengan unsur-unsur lain; namun, studi penting telah dilakukan. Perbedaan utama antara astatin dan [[iodin]] adalah bahwa molekul HAt secara kimia lebih cenderung [[hidrida]] daripada [[halida]]; namun, dengan cara yang sama dengan halogen ringan, diketahui dapat membentuk ion astatida dengan logam. Ikatan dengan [[nonlogam]] menghasilkan [[tingkat oksidasi]] positif, dengan +1 paling baik digambarkan dengan monohalida dan turunannya, sedangkan yang lebih tinggi ditandai dengan ikatan dengan [[oksigen]] dan [[karbon]]. Upaya untuk mensintesis [[astatin fluorida]] telah menemui kegagalan. [[Astatin-211]], yang merupakan astatin dengan umur terpanjang kedua, adalah satu-satunya yang mempunyai penggunaan komersial, dan dimanfaatkan sebagai [[Peluruhan alfa|emitor alfa]] dalam pengobatan; namun, penggunaannya hanya melibatkan jumlah yang sangat kecil. Dosis yang lebih besar itu sangat berbahaya, karena sangat radioaktif.
Until recently most of the chemical characteristics of astatine were inferred from comparison with other elements; however, important studies have already been done. The main difference between astatine and [[iodine]] is that the HAt molecule is chemically a [[hydride]] rather than a [[halide]]; however, in a fashion similar to the lighter halogens, it is known to form ionic astatides with metals. Bonds to [[nonmetal]]s result in positive [[oxidation state]]s, with +1 best portrayed by monohalides and their derivatives, while the higher are characterized by bond to oxygen and carbon. Attempts to synthesize astatine fluoride have been met with failure. The second longest-living astatine-211 is the only one to find a commercial use, being useful as an [[alpha decay|alpha emitter]] in medicine; however, only extremely small quantities are used, and in larger ones it is very hazardous, as it is intensely radioactive.
 
AstatineAstatin waspertama firstkali produceddiproduksi byoleh [[Dale R. Corson]], [[Kenneth Ross MacKenzie]], anddan [[Emilio SegrèSegre]] in thedi [[University ofUniversitas California, Berkeley]] inpada tahun 1940. ThreeTiga yearstahun laterkemudian, itditemukan wasdi found in naturealam; howevernamun, withdengan anjumlah estimateddiperkirakan amountkurang of less thandari 28&nbsp;gramsgram (1&nbsp;oz) atpada givenwaktu timetertentu, astatineastatin isadalah theunsur leastpaling abundantlangka elementdalam inkerak Earth'sbumi crustdi amongkalangan non-[[Unsur transuranium|unsur elementnon-transuranium]]s. AmongDi astatineantara isotopesisotop astatin, sixenam (withdengan [[massnomor numbermassa]]s 214 to -219) areterdapat presentdi inalam naturesebagai asakibat thedari resultpeluruhan ofunsur decayyang oflebih heavier elementsberat; howevernamun, the most stable astatineastatin-210 andyang thepaling industriallystabil useddan astatineastatin-211 areyang digunakan oleh industri tidak termasuk yang berasal dari peluruhan nottersebut.
 
=== Radon ===
{{main|Radon}}
'''{{UnsurEja|Radon''' (|{{IPAc-en|ˈ|r|eɪ|d|ɒ|n}} {{respell|RAY|don}}) is a [[chemical element]] with symbol '''|Rn''' and [[atomic number]] |86.}} ItUnsur isini aadalah [[radioactivepeluruhan decayradioaktif|radioactiveradioaktif]], colorless,tidak odorlessberwarna, tasteless{{citationtidak needed|date=February 2012}}berbau, [[noblegas gasmulia]] yang tidak berasa, occurringyang naturallyterjadi assecara thealami decaysebagai productproduk ofpeluruhan [[uranium]] oratau [[thoriumtorium]]. Its most stable [[isotopeIsotop]]nya yang paling stabil, [[Radon-222|<sup>{{chem2|222</sup>|Rn}}]], has amemiliki [[half-lifewaktu paruh]] of 3.,8 dayshari. Radon isadalah onesalah ofsatu thezat densestterpadat substancesyang thattetap remains amenjadi [[gas]] underdalam kondisi normal conditions. ItIa isjuga also the onlysatu-satunya gas thatyang isradioaktif radioactivedalam underkondisi normal conditions, anddan isdianggap consideredmembahayakan akesehatan healthkarena hazard due to its radioactivityradioaktivitasnya. IntenseRadioaktivitasnya radioactivityyang alsokuat hinderedjuga chemicalmenghambat studiesstudi ofkimia radon and onlydan ahanya fewbeberapa compoundssenyawa areyang knowndikenal.
 
Radon isterbentuk formedsebagai asbagian part of the normal radioactivedari [[decayrantai chainpeluruhan]] ofradioaktif normal uranium anddan thoriumtorium. Uranium anddan thoriumtorium havetelah beenada aroundsejak sincebumi theterbentuk earth was formed and theirdan [[isotopes ofisotop thoriumtorium|mostisotop commonmereka isotopeyang paling umum]] hasmemiliki awaktu veryparuh longyang half-lifesangat panjang (14.,05 billionmiliar yearstahun). Uranium anddan thoriumtorium, [[radium]], anddan thusdengan demikian radon, willakan continueterus toterbentuk occurselama forjutaan millionstahun ofdengan yearskonsentrasi atyang about the same concentrations askira-kira theysama doseperti nowsekarang.<ref name=USPHS90>[http://www.bvsde.paho.org/bvstox/i/fulltext/toxprofiles/radon.pdf Toxological profile for radon] {{Webarchive|url=https://web.archive.org/web/20160415161629/http://www.bvsde.paho.org/bvstox/i/fulltext/toxprofiles/radon.pdf |date=2016-04-15 }}, [[Agency for Toxic Substances and Disease Registry]], U.S. Public Health Service, In collaboration with U.S. Environmental Protection Agency, December 1990.</ref> AsSeiring thedengan radioactivepeluruhan gas ofradioaktif radon decays,unsur itradioaktif producesbaru newdihasilkan radioactiveyang elementsdisebut calledproduk radonpeluruhan daughtersatau orputri decay productsradon. RadonPutri daughtersradon areadalah solidspadatan anddan stickmenempel topada surfacespermukaan suchseperti aspartikel dustdebu particlesdi inudara. theJika air.debu Ifyang contaminatedterkontaminasi dustini is inhaleddihirup, thesepartikel-partikel particlesini candapat stickmenempel topada thesaluran airwaysudara ofparu-paru thedan lungmeningkatkan andrisiko increasepertumbuhan thekanker risk of developing lung cancerparu-paru.<ref>{{cite web|url=http://www.mass.gov/eohhs/consumer/community-health/environmental-health/exposure-topics/radiation/radon/public-health-fact-sheet-on-radon.html |title=Public Health Fact Sheet on Radon – Health and Human Services |publisher=Mass.Gov |accessdate=2011-12-04}}</ref>
 
Radon bertanggung jawab untuk sebagian besar paparan publik terhadap [[radiasi pengion]]. Seringkali radon merupakan penyumbang tunggal terbesar terhadap dosis [[radiasi latar belakang]] individu, dan yang paling bervariasi dari lokasi ke lokasi. Gas radon dari sumber alami dapat terakumulasi di gedung-gedung, terutama di daerah terbatas seperti loteng dan ruang bawah tanah. Ini juga dapat dijumpai di beberapa [[mata air]] dan sumber air panas.<ref>{{cite web|title=Facts about Radon|publisher=Facts about|url=http://www.facts-about.org.uk/science-element-radon.htm|accessdate=2008-09-07}}</ref>
Radon is formed as part of the normal radioactive [[decay chain]] of uranium and thorium. Uranium and thorium have been around since the earth was formed and their [[isotopes of thorium|most common isotope]] has a very long half-life (14.05 billion years). Uranium and thorium, [[radium]], and thus radon, will continue to occur for millions of years at about the same concentrations as they do now.<ref name=USPHS90>[http://www.bvsde.paho.org/bvstox/i/fulltext/toxprofiles/radon.pdf Toxological profile for radon], [[Agency for Toxic Substances and Disease Registry]], U.S. Public Health Service, In collaboration with U.S. Environmental Protection Agency, December 1990.</ref> As the radioactive gas of radon decays, it produces new radioactive elements called radon daughters or decay products. Radon daughters are solids and stick to surfaces such as dust particles in the air. If contaminated dust is inhaled, these particles can stick to the airways of the lung and increase the risk of developing lung cancer.<ref>{{cite web|url=http://www.mass.gov/eohhs/consumer/community-health/environmental-health/exposure-topics/radiation/radon/public-health-fact-sheet-on-radon.html |title=Public Health Fact Sheet on Radon – Health and Human Services |publisher=Mass.Gov |accessdate=2011-12-04}}</ref>
 
Penelitian [[epidemiologi]] telah menunjukkan hubungan yang jelas antara menghirup radon konsentrasi tinggi dengan kejadian [[kanker paru-paru]]. Dengan demikian, radon dianggap sebagai kontaminan signifikan yang mempengaruhi [[kualitas udara dalam ruangan]] di seluruh dunia. Menurut [[Badan Perlindungan Lingkungan Amerika Serikat]], radon adalah penyebab kanker paru-paru paling banyak kedua, setelah rokok, menyebabkan 21.000 kematian akibat kanker paru-paru per tahun di [[Amerika Serikat]]. Sekitar 2.900 kematian ini terjadi antara orang-orang yang tidak pernah merokok. Meskipun radon adalah penyebab kanker paru-paru paling banyak kedua, tetapi adalah penyebab nomor satu di kalangan non-perokok, menurut perkiraan EPA.<ref name="epa">{{cite web|url=http://www.epa.gov/radon/pubs/citguide.html|title=A Citizen's Guide to Radon|date=October 12, 2010|work=www.epa.gov|publisher=[[United States Environmental Protection Agency]]|accessdate=January 29, 2012}}</ref>
Radon is responsible for the majority of the public exposure to [[ionizing radiation]]. It is often the single largest contributor to an individual's [[background radiation]] dose, and is the most variable from location to location. Radon gas from natural sources can accumulate in buildings, especially in confined areas such as attics and basements. It can also be found in some [[Spring (hydrosphere)|spring waters]] and hot springs.<ref>{{cite web|title=Facts about Radon|publisher=Facts about|url=http://www.facts-about.org.uk/science-element-radon.htm|accessdate=2008-09-07}}</ref>
 
== Peran biologis ==
[[Epidemiological]] studies have shown a clear link between breathing high concentrations of radon and incidence of [[lung cancer]]. Thus, radon is considered a significant contaminant that affects [[indoor air quality]] worldwide. According to the [[United States Environmental Protection Agency]], radon is the second most frequent cause of lung cancer, after cigarette smoking, causing 21,000 lung cancer deaths per year in the [[United States]]. About 2,900 of these deaths occur among people who have never smoked. While radon is the second most frequent cause of lung cancer, it is the number one cause among non-smokers, according to EPA estimates.<ref name="epa">{{cite web|url=http://www.epa.gov/radon/pubs/citguide.html|title=A Citizen's Guide to Radon|date=October 12, 2010|work=www.epa.gov|publisher=[[United States Environmental Protection Agency]]|accessdate=January 29, 2012}}</ref>
Dari semua unsur periode 6, hanya wolfram yang diketahui memiliki peran biologis dalam organisme. Namun emas, platina, raksa, dan beberapa lantanida seperti gadolinium memiliki aplikasi, misalnya obat-obatan.
 
== Toksisitas ==
==Biological role==
Sebagian besar unsur periode 6 adalah toksik (misalnya timbal) dan menyebabkan [[keracunan logam berat]]. Prometium, polonium, astatin dan radon adalah radioaktif, sehingga menimbulkan bahaya radioaktif.
Of the period 6 elements, only tungsten is known to have any biological role in organisms. However, gold, platinum, mercury, and some lanthanides such as gadolinium have applications as drugs.
 
==Toxicity Lihat juga ==
#ALIH* [[Periode tabel periodik]]
Most of the period 6 elements are toxic(for instance lead) and produce [[heavy element poisoning]]. Promethium, polonium, astatine and radon are radioactive, and therefore present radioactive hazards.
** [[Unsur periode 1]]
** [[Unsur periode 2]]
** [[Unsur periode 3]]
** [[Unsur periode 4]]
** [[Unsur periode 5]]
** [[Unsur periode 7]]
** [[Tabel periodik perluasan|Unsur periode 8]]
 
==Notes Catatan kaki ==
{{Reflist|group=notecatatan}}
 
==References Referensi ==
{{Reflist|30em}}
<!--{{Periodic tables footer}}-->
{{Compact periodic table}}
 
{{DEFAULTSORT:PeriodPeriode 06}}
[[Kategori:Periode unsur kimia]]
[[Category:Periods in the periodic table]]
[[CategoryKategori:PagesHalaman containingyang mengandung element color directlysecara langsung]]