Wolfram: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
InternetArchiveBot (bicara | kontrib)
Rescuing 0 sources and tagging 1 as dead.) #IABot (v2.0.8.6
InternetArchiveBot (bicara | kontrib)
Add 1 book for Wikipedia:Pemastian (20231209)) #IABot (v2.0.9.5) (GreenC bot
 
(6 revisi perantara oleh 3 pengguna tidak ditampilkan)
Baris 2:
{{UnsurAlias|Wolfram|tungsten|W|74}} Istilah ''tungsten'' berasal dari bahasa [[Swedia]] ''tung sten'', yang berarti ''batu berat''.<ref>{{OED|Tungsten}}</ref> Namanya dalam bahasa Swedia adalah ''volfram'', namun untuk membedakan dari [[scheelit]], maka diberi nama alternatif tungsten dalam bahasa Swedia.
 
'''Wolfram''' alami yang dijumpai di bumi hampir selalu sebagai senyawa kimia. Ia adalah [[logam langka]] yang keras pada kondisi standar jika tidak bergabung. Ia diidentifikasi sebagai unsur baru pada tahun 1781, dan diisolasi pertama kali pada tahun 1783. [[Bijih]] wolfram yang penting mencakup [[wolframit]] dan [[scheelit]]. Ketahanan [[unsur bebas]]nya luar biasa, terutama fakta bahwa ia memiliki [[titik leleh]] tertinggi di antara seluruh unsur yang ditemukan. Ia meleleh pada {{convert|3422|C|F}}. Massa jenisnya yang tinggi mencapai 19,3 kali massa jenis air, sebanding dengan [[uranium]] dan [[emas]], dan lebih tinggi (sekitar 1,7 kali) daripada [[timbal]].<ref name="daintith">{{cite book |last=Daintith |first=John |title=Facts on File Dictionary of Chemistry |edition=4th |location=New York |publisher=Checkmark Books |date=2005 |isbn=0-8160-5649-8 }}</ref> Wolfram polikristalin adalah bahan yang [[rapuh]]<ref>{{cite book |title=Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds|first = Erik|last = Lassner|author2=Schubert, Wolf-Dieter | publisher = Springer|date = 1999|isbn = 978-0-306-45053-2|url = https://books.google.com/?id=foLRISkt9gcC&pg=PA20|chapter = low temperature brittleness|pages = 20–21}}</ref><ref>{{cite journal|last1=Gludovatz|first1=B.|last2=Wurster|first2=S.|last3=Weingärtner|first3=T.|last4=Hoffmann|first4=A.|last5=Pippan|first5=R.|title=Influence of impurities on the fracture behavior of tungsten|journal=Philosophical Magazine|date=2011|volume=91|issue=22|pages=3006–3020|doi=10.1080/14786435.2011.558861}}</ref> dan [[Kekerasan|keras]], membuatnya sulit untuk [[Pengolahan logam|diolah]]. Namun, wolfram kristal tunggal yang murni lebih [[Keuletan (fisika)|liat]], dan dapat dipotong menggunakan [[gergaji]] baja keras.<ref name="albert">{{cite book |last=Stwertka |first=Albert |title=A Guide to the elements |url=https://archive.org/details/guidetoelements0002stwe |edition=2nd |location=New York |publisher=Oxford University Press |date=2002 |isbn=0-19-515026-0 }}</ref>
 
Banyak paduan wolfram mempunyai beragam aplikasi, termasuk filamen [[lampu pijar]], [[tabung sinar-X]] (baik sebagai filamen maupun target), elektrode dalam [[pengelasan WIG]], [[superalloy]], vaccum tube, dan [[Proteksi radiasi|perisai radiasi]]. Kekerasan dan [[massa jenis]] wolfram yang tinggi memberikan aplikasi militer dalam [[proyektil]] penembus. Senyawa wolfram juga sering digunakan sebagai [[katalis]] industri.
Baris 19:
|pmid = 9667924}}</ref><ref>{{cite journal
|title = Molybdenum and tungsten in biology
|url = https://archive.org/details/sim_trends-in-biochemical-sciences_2002-07_27_7/page/360
|author = Hille, Russ
|journal = Trends in Biochemical Sciences
Baris 33 ⟶ 34:
Dalam bentuk mentahnya, wolfram adalah logam abu-abu keras yang sering [[rapuh]] dan sulit untuk [[pengolahan logam|diolah]]. Jika dibuat sangat murni, wolfram mempertahankan [[kekerasan]]nya (yang melebihi kebanyakan baja), dan menjadi [[Keuletan (fisika)|lunak]] cukup sehingga mudah diolah.<ref name="albert"/> Ia diolah melalui [[Tempa (metalurgi)|penempaan]], [[Tarik (manufaktur)|penarikan]], atau [[Ekstrusi (manufaktur)|ekstrusi]]. Objek wolfram juga biasa dibentuk melalui [[sintering]].
 
Dari seluruh logam dalam bentuk murni, wolfram memiliki [[titik leleh]] tertinggi ({{convert|3422|C|F}}), [[tekanan uap]] terendah (pada suhu di atas {{convert|1650|C|F}}) dan [[kekuatan tarik]] tertinggi.<ref name="desu">{{cite book| author = Hammond, C. R. |title = The Elements, in Handbook of Chemistry and Physics | url = https://archive.org/details/crchandbookofche81lide |edition = 81st| publisher =CRC press| isbn = 0-8493-0485-7| date = 2004}}</ref> Meskipun [[karbon]] tetap padat pada suhu yang lebih tinggi daripada wolfram, karbon [[sublimasi (transisi fase)|menyublim]] pada [[tekanan atmosfer]] dan bukannya mencair, jadi tidak mempunyai titik lebur. Wolfram memiliki [[koefisien ekspansi termal]] terendah daripada logam murni manapun. Ekspansi termal yang rendah dan titik lebur yang tinggi dan [[kekuatan tarik]] wolfram berasal dari [[ikatan kovalen]] yang kuat yang terbentuk antara atom wolfram oleh elektron 5d.<ref>{{cite book|url=https://books.google.com/?id=foLRISkt9gcC&pg=PA9|page=9|title=Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds|author=Lassner, Erik |author2=Schubert, Wolf-Dieter |publisher=Springer|date=1999|isbn=0-306-45053-4}}</ref> Memadu sejumlah kecil wolfram dengan [[baja]] sangat meningkatkan ketangguhannya.<ref name="daintith"/>
 
Wolfram ada dalam dua bentuk [[kristalinitas|kristal]] utama: α dan β. Bentuk pertama memiliki struktur [[sistem kristal kubik|kubus pusat badan]] dan bentuknya lebih stabil. Struktur fase β disebut [[Fasa A15|A15 kubik]]; ia [[metastabil]], namun dapat berdampingan dengan fasa α pada kondisi ambien karena sintesis atau stabilisasi non-ekuilibrium oleh ketakmurnian. Bertentangan dengan fase α yang mengkristal dalam butir isometrik, bentuk β menunjukkan [[Perawakan kristal|perawakan]]<!--Crystal habit--> kolumnar. Fasa α memiliki sepertiga [[resistivitas listrik]]<ref>Heather Bean [http://users.frii.com/bean/analysis.htm Material Properties and Analysis Techniques for Tungsten Thin Films] {{Webarchive|url=https://web.archive.org/web/20111023221423/http://users.frii.com/bean/analysis.htm |date=2011-10-23 }}. October 19, 1998</ref> dan [[Superkonduktivitas|suhu transisi superkonduksi]] T{{sub|C}} yang jauh lebih rendah dibandingkan fase β: ca. 0,015 K vs 1-4 K; mencampur dua fase memungkinkan memperoleh nilai T{{sub|C}} menengah.<ref>{{cite journal|title=Tuning of Tungsten Thin Film Superconducting Transition Temperature for Fabrication of Photon Number Resolving Detectors|url=http://mysite.du.edu/~balzar/IEEE-Adriana%20-2005.pdf|author=Lita, A. E.|author2=Rosenberg, D.|author3=Nam, S.|author4=Miller, A.|author5=Balzar, D.|author6=Kaatz, L. M.|author7=Schwall, R. E|journal=IEEE Transactions on Applied Superconductivity|volume=15|issue=2|pages=3528–3531|doi=10.1109/TASC.2005.849033|date=2005}}</ref><ref>{{Cite journal| doi = 10.1103/PhysRevLett.16.101| volume = 16 | issue = 3| pages = 101–104| last = Johnson| first = R. T.|author2=O. E. Vilches |author3=J. C. Wheatley |author4=Suso Gygax | title = Superconductivity of Tungsten| journal = Physical Review Letters| date = 1966|bibcode = 1966PhRvL..16..101J }}</ref> Nilai T{{sub|C}} juga dapat dinaikkan dengan [[Logam paduan|memadukan]] wolfram dengan logam lain (misalnya 7,9 K untuk W-[[teknesium|Tc]]).<ref>{{Cite journal | doi = 10.1103/PhysRev.140.A1177| volume = 140| issue = 4A| pages = A1177–A1180| last = Autler| first = S. H.|author2=J. K. Hulm |author3=R. S. Kemper | title = Superconducting Technetium-Tungsten Alloys| journal = Physical Review|date = 1965|bibcode = 1965PhRv..140.1177A }}</ref> Paduan wolfram semacam itu kadang-kadang digunakan pada sirkuit superkonduksi suhu rendah.<ref>{{Cite journal | doi = 10.1209/0295-5075/79/57008| volume = 79| pages = 57008| last = Shailos| first = A.|author2=W Nativel |author3=A Kasumov |author4=C Collet |author5=M Ferrier |author6=S Guéron |author7=R Deblock |author8=H Bouchiat | title = Proximity effect and multiple Andreev reflections in few-layer graphene| journal = Europhysics Letters (EPL)| date = 2007|arxiv = cond-mat/0612058 |bibcode = 2007EL.....7957008S | issue = 5 }}</ref><ref>{{Cite journal| doi = 10.1103/PhysRevB.72.033414| volume = 72| issue = 3| pages = 033414| last = Kasumov| first = A. Yu.| author2 = K. Tsukagoshi| author3 = M. Kawamura| author4 = T. Kobayashi| author5 = Y. Aoyagi| author6 = K. Senba| author7 = T. Kodama| author8 = H. Nishikawa| author9 = I. Ikemoto| author10 = K. Kikuchi| author11 = V. T. Volkov| author12 = Yu. A. Kasumov| author13 = R. Deblock| author14 = S. Guéron| author15 = H. Bouchiat| title = Proximity effect in a superconductor-metallofullerene-superconductor molecular junction| journal = Physical Review B|date=2005|arxiv = cond-mat/0402312 |bibcode = 2005PhRvB..72c3414K }}</ref><ref>{{Cite journal
Baris 47 ⟶ 48:
Unsur wolfram menahan [[Redoks|serangan oleh oksigen]], [[asam]], dan [[alkali]].<ref name="emsley"/>
 
Bentuk [[keadaan oksidasi]] wolfram yang paling umum adalah +6, tetapi ia menunjukkan semua tingkat oksidasi mulai -2 hingga +6.<ref name="emsley">{{cite book |last=Emsley |first=John E. |title=The elements |url=https://archive.org/details/elements0000emsl_j5r1 |edition=2nd |publisher=Oxford University Press |location=New York |date=1991 |isbn=0-19-855569-5 }}</ref><ref>{{Cite journal
| last1 = Morse|first1 = P. M.
| last2 = Shelby|first2 = Q. D.
Baris 70 ⟶ 71:
Pada tahun 1781, [[Carl Wilhelm Scheele]] menemukan bahwa suatu [[asam]] baru, [[asam wolframat]], dapat dibuat dari [[scheelit]] (saat itu bernama tungsten). Scheele dan [[Torbern Bergman]] menyarankan bahwa mungkin akan diperoleh logam baru dengan mereduksi asam ini.<ref name="SaundersN"/> Pada tahun 1783, [[Juan José Elhuyar|José]] dan [[Fausto Elhuyar]] menemukan suatu asam yang dibuat dari [[wolframit]] yang identik dengan asam wolframat. Pada akhir tahun tersebut, pada [[Real Sociedad Bascongada de Amigos del País|''Royal Basque Society'']] di kota [[Bergara]], [[Spanyol]], Elhuyar bersaudara sukses mengisolasi wolfram dengan mereduksi asam ini dengan [[arang]], dan mereka dianugerahi sebagai penemu unsur wolfram.<ref name="ITIAnews_0605">{{cite news|url=http://www.itia.info/FileLib/Newsletter_2005_06.pdf |title=ITIA Newsletter |date=June 2005 |publisher=International Tungsten Industry Association |accessdate=2008-06-18 |format=PDF |deadurl=unfit |archiveurl=https://web.archive.org/web/20110721214335/http://www.itia.info/FileLib/Newsletter_2005_06.pdf |archivedate=July 21, 2011 }}</ref><ref name="ITIAnews_1205">{{cite news|url=http://www.itia.info/FileLib/Newsletter_2005_12.pdf |title=ITIA Newsletter |date=December 2005 |publisher=International Tungsten Industry Association |accessdate=2008-06-18 |format=PDF |deadurl=unfit |archiveurl=https://web.archive.org/web/20110721214335/http://www.itia.info/FileLib/Newsletter_2005_12.pdf |archivedate=July 21, 2011 }}</ref>
 
Dalam [[Perang Dunia II]], wolfram memainkan peran signifikan dalam urusan berlatar belakang politik. Portugal, sebagai sumber wolfram utama di Eropa, berada di bawah tekanan kedua belah pihak, karena deposit bijih wolframitnya di [[Panasqueira]]. Sifat wolfram yang diinginkan seperti ketahanannya terhadap suhu tinggi, kekrasankekerasan dan kepadatannya, dan sifatnya yang dapat menguatkan jika digunakan dalam logam paduan, membuat wolfram sebagai bahan mentah penting dalam industri senjata,<ref name="portugal">{{cite journal|last=Stevens|first=Donald G.|date=1999|title=World War II Economic Warfare: The United States, Britain, and Portuguese Wolfram|journal=The Historian|publisher= Questia|url=http://www.questia.com/googleScholar.qst;jsessionid=LY1PyzmCc1D256Gvh5wpbhxKyTyvcm2FHpMwpcs2wW2XyytCh4pW!956463030?docId=5001286099}}</ref><ref>{{cite journal | title=The Price of Neutrality: Portugal, the Wolfram Question, and World War II| author= Wheeler, L. Douglas| journal=Luso-Brazilian Review| volume= 23 |number= 1 |date=Summer 1986| jstor= 3513391}}</ref> baik sebagai konstituen senjata maupun peralatan yang digunakan untuk produksi senjata, misalnya alat pemotong [[wolfram karbida]] untuk mesin-mesin baja.
 
=== Etimologi ===
Baris 221 ⟶ 222:
 
=== Kawat nano ===
Melalui proses [[fabrikasi nano]] ''top-down'', [[kawat nano]] wolfram telah dibuat dan dipelajari sejak tahun 2002.<ref>{{cite journal | author = Li Yadong| title=From Surfactant–Inorganic Mesostructures to Tungsten Nanowires}}</ref> Karena rasio permukaan terhadap volume yang sangat tinggi, pembentukan lapisan oksida permukaan dan sifat kristal tunggal dari bahan semacam itu, sifat mekaniknya berbeda secara mendasar dari wolfram ruah.<ref>{{cite journal| url = http://dl.acm.org/citation.cfm?id=1385047 | title = Nanomechanics of single crystalline tungsten nanowires | journal = Journal of Nanomaterials | year = 2008 | author = Volker Cimalla}}</ref> Kawat nano wolfram memiliki aplikasi potensial dalam bidang [[nanoelektronik]] dan yang terpenting adalah sebagai probe pH dan sensor gas.<ref>{{cite journal | title=High-sensitivity hydrocarbon sensors based on tungsten oxide nanowires| journal= J of Materials Chemistry | year= 2006| author = CNR Rao}}</ref> Kemiripannya dengan [[kawat nano silikon]], kawat nano wolfram sering dibuat dari prekursor wolfram curah yang diikuti oleh tahap [[oksidasi termal]] untuk mengendalikan morfologi dalam hal panjang dan aspek rasio.<ref>{{cite journal| last1= Liu| first1=M.| last2= Peng |first2=J.| last3= et al. |title= Two-dimensional modeling of the self-limiting oxidation in silicon and tungsten nanowires | journal= Theoretical and Applied Mechanics Letters | year= 2016 | volume=6 | issue=5 | pages=195–199 | url= http://www.sciencedirect.com/science/article/pii/S209503491630040X | doi= 10.1016/j.taml.2016.08.002 }}</ref> Dengan menggunakan [[model Deal–Grove]], dimungkinkan untuk memprediksi kinetika oksidasi kawat nano yang dibuat melalui proses oksidasi termal.<ref>{{cite journal | url = http://www.ece.nus.edu.sg/stfpage/elettl/PDF%20files/E-publications/2010-JAP-108-YouGF-Thermal%20oxidation%20of%20polycrystalline%20tungsten%20nanowire.pdf | journal = Journal of Applied Physics | year = 2010 | title = Thermal oxidation of polycrystalline tungsten nanowire | author = JTL Thong | access-date = 2017-06-21 | archive-date = 2017-03-15 | archive-url = https://web.archive.org/web/20170315001309/https://www.ece.nus.edu.sg/stfpage/elettl/PDF%20files/E-publications/2010-JAP-108-YouGF-Thermal%20oxidation%20of%20polycrystalline%20tungsten%20nanowire.pdf | dead-url = yes }}</ref>
 
== Peran biologis ==
Baris 291 ⟶ 292:
[[Kategori:Biologi dan farmakologi unsur kimia]]
[[Kategori:Logam refraktori]]
[[Kategori:Unsur kimia dengan struktur kubus berpusat-badan]]