1/2 + 1/4 + 1/8 + 1/16 + ⋯

Dalam matematika, deret tak hingga 12 + 14 + 18 + 116 + · · · adalah contoh dasar dari deret geometri yang mutlak konvergen. Hasil penjumlahan tersebut bernilai 1. Deret ini dapat dinyatakan ke dalam bentuk notasi Sigma, yakni sebagai:Deret ini mempunyai kaitan dengan pertanyaan filosofis pada zaman kuno, khususnya paradoks Zeno.

Enam penjumlahan pertama digambar sebagai bagian-bagian persegi.
Deret geometri di garis bilangan real.

Seperti semua deret tak hingga, jumlah dari

 

didefinisikan sebagai limit dari jumlah parsial dari suku n yang pertama

 

ketika n menuju ke tak hingga. Dengan menggunakan berbagai argumen,[a] jumlah deret terhingga akan sama dengan

 

Ketika n menuju ke tak hingga, bentuk ekspresi   menuju ke 0, dan demikian sn menuju ke 1.

Sejarah

sunting

Deret ini digunakan sebagai salah satu representasi dari paradoks Zeno.[1] Bagian dari Mata Horus pernah dianggap untuk merepresentasikan enam penjumlahan pertama dari deret ini.[2]

Lihat pula

sunting

Catatan

sunting
  1. ^ Sebagai contoh, dengan mengalikan sn oleh 2, akan menghasilkan  Ketika mengurangi sn dari kedua ruas, maka dapat disimpulkan bahwa   Ada beberapa argumen yang menggunakan induksi matematika, atau menambahkan   pada kedua ruas dari persamaan   hingga memanipulasi agar memperlihatkan bahwa hasil jumlah pada ruas kanan sama dengan 1.[butuh rujukan]

Referensi

sunting
  1. ^ Wachsmuth, Bet G. "Description of Zeno's paradoxes". Diarsipkan dari versi asli tanggal 2014-12-31. Diakses tanggal 2014-12-29. 
  2. ^ Stewart, Ian (2009). Professor Stewart's Hoard of Mathematical Treasures. Profile Books. hlm. 76–80. ISBN 978 1 84668 292 6.