Berkas:Wakes near the period 1 continent in the Mandelbrot set.png
Ukuran pratayang ini: 600 × 600 piksel. Resolusi lainnya: 240 × 240 piksel | 480 × 480 piksel | 768 × 768 piksel | 1.024 × 1.024 piksel | 2.048 × 2.048 piksel | 4.096 × 4.096 piksel.
Ukuran asli (4.096 × 4.096 piksel, ukuran berkas: 1,54 MB, tipe MIME: image/png)
Berkas ini berasal dari Wikimedia Commons dan mungkin digunakan oleh proyek-proyek lain. Deskripsi dari halaman deskripsinya ditunjukkan di bawah ini.
Daftar isi
Ringkasan
DeskripsiWakes near the period 1 continent in the Mandelbrot set.png |
English: Wakes near the period 1 continent in the Mandelbrot set. Boundary of the Mandelbrot set rendered with distance estimation (exterior and interior). Labelled with periods (blue), internal angles and rays (green) and external angles and rays (red). |
Tanggal | |
Sumber | Karya sendiri |
Pembuat | Claude Heiland-Allen |
Versi lainnya |
Ringkasan
This image is made with c code, see : http://code.mathr.co.uk/mandelbrot-graphics/blob/HEAD:/c/bin/m-subwake-diagram-a.c
Dependencies :
- http://code.mathr.co.uk/mandelbrot-graphics
- http://code.mathr.co.uk/mandelbrot-numerics
- http://code.mathr.co.uk/mandelbrot-symbolics
- https://cairographics.org/
C src code
/*
http://code.mathr.co.uk/mandelbrot-graphics/blob/HEAD:/c/bin/m-subwake-diagram-a.c
by Claude Heiland-Allen
*/
#include <mandelbrot-graphics.h>
#include <mandelbrot-numerics.h>
#include <mandelbrot-symbolics.h>
#include <cairo.h>
const double twopi = 6.283185307179586;
void draw_label(m_image *image, m_d_transform *transform, double _Complex c0, const char *text, double pt, m_pixel_t colour) {
double _Complex c = c0;
double _Complex dc = 1;
m_d_transform_reverse(transform, &c, &dc);
cairo_surface_t *surface = m_image_surface(image);
cairo_t *cr = cairo_create(surface);
cairo_select_font_face(cr, "LMSans10", CAIRO_FONT_SLANT_NORMAL, CAIRO_FONT_WEIGHT_NORMAL);
cairo_set_font_size(cr, pt);
cairo_text_extents_t te;
cairo_text_extents(cr, text, &te);
cairo_move_to(cr, creal(c) - te.x_bearing - te.width / 2, cimag(c) - te.y_bearing - te.height / 2);
cairo_text_path(cr, text);
cairo_set_source_rgba(cr, m_pixel_red(colour), m_pixel_green(colour), m_pixel_blue(colour), m_pixel_alpha(colour));
cairo_fill(cr);
cairo_destroy(cr);
}
void draw_internal_ray(m_image *image, m_d_transform *transform, int period, double _Complex nucleus, const char *angle, double pt, m_pixel_t colour) {
int steps = 128;
mpq_t theta;
mpq_init(theta);
mpq_set_str(theta, angle, 10);
mpq_canonicalize(theta);
double a = twopi * mpq_get_d(theta);
mpq_clear(theta);
double _Complex interior = cos(a) + I * sin(a);
double _Complex cl = 0, cl2 = 0;
double _Complex c = nucleus;
double _Complex z = c;
cairo_surface_t *surface = m_image_surface(image);
cairo_t *cr = cairo_create(surface);
cairo_set_source_rgba(cr, m_pixel_red(colour), m_pixel_green(colour), m_pixel_blue(colour), m_pixel_alpha(colour));
for (int i = 0; i < steps; ++i) {
if (2 * i == steps) {
cl = c;
}
if (2 * i == steps + 2) {
cl2 = c;
}
double radius = (i + 0.5) / steps;
m_d_interior(&z, &c, z, c, radius * interior, period, 64);
double _Complex pc = c;
double _Complex pdc = 1;
m_d_transform_reverse(transform, &pc, &pdc);
if (i == 0) {
cairo_move_to(cr, creal(pc), cimag(pc));
} else {
cairo_line_to(cr, creal(pc), cimag(pc));
}
}
cairo_stroke(cr);
if (a != 0) {
double t = carg(cl2 - cl);
cairo_save(cr);
double _Complex dcl = 1;
m_d_transform_reverse(transform, &cl, &dcl);
cairo_translate(cr, creal(cl), cimag(cl));
cairo_rotate(cr, -t);
cairo_translate(cr, 0, -pt/3);
cairo_select_font_face(cr, "LMSans10", CAIRO_FONT_SLANT_NORMAL, CAIRO_FONT_WEIGHT_NORMAL);
cairo_set_font_size(cr, pt);
cairo_text_path(cr, angle);
cairo_fill(cr);
cairo_restore(cr);
}
cairo_destroy(cr);
}
void draw_external_ray(m_image *image, m_d_transform *transform, const char *angle, m_pixel_t colour, double dx, double dy) {
int maxiters = 1024;
double r = sqrt(2);
m_binangle btheta;
m_binangle_init(&btheta);
m_binangle_from_string(&btheta, angle);
mpq_t qtheta;
mpq_init(qtheta);
m_binangle_to_rational(qtheta, &btheta);
m_binangle_clear(&btheta);
m_d_exray_in *ray = m_d_exray_in_new(qtheta, 8);
mpq_clear(qtheta);
cairo_surface_t *surface = m_image_surface(image);
cairo_t *cr = cairo_create(surface);
cairo_set_source_rgba(cr, m_pixel_red(colour), m_pixel_green(colour), m_pixel_blue(colour), m_pixel_alpha(colour));
bool first = true;
for (int i = 0; i < maxiters; ++i) {
if (m_failed == m_d_exray_in_step(ray, 64)) {
break;
}
double _Complex c = m_d_exray_in_get(ray);
if (cabs(c + 0.75) > r) {
continue;
}
double t = carg(c + 0.75);
double _Complex dc = 1;
m_d_transform_reverse(transform, &c, &dc);
if (first) {
cairo_save(cr);
cairo_translate(cr, creal(c) + dx, cimag(c) + dy);
cairo_rotate(cr, -t);
cairo_select_font_face(cr, "LMMono10", CAIRO_FONT_SLANT_NORMAL, CAIRO_FONT_WEIGHT_NORMAL);
cairo_set_font_size(cr, 48);
cairo_text_path(cr, angle);
cairo_fill(cr);
cairo_restore(cr);
cairo_move_to(cr, creal(c) + dx, cimag(c) + dy);
first = false;
} else {
cairo_line_to(cr, creal(c), cimag(c));
}
}
cairo_stroke(cr);
cairo_destroy(cr);
}
int main(int argc, char **argv) {
(void) argc;
(void) argv;
int w = 4096;
int h = 4096;
complex double c = -0.75;
double r = 1.75;
double er = 600;
int maxiters = 8192;
const char *filename = "subwake-diagram-a.png";
m_pixel_t red = m_pixel_rgba(1, 0, 0, 1);
m_pixel_t green = m_pixel_rgba(0, 0.5, 0, 1);
m_pixel_t blue = m_pixel_rgba(0, 0, 1, 1);
m_pixel_t black = m_pixel_rgba(0, 0, 0, 1);
m_pixel_t white = m_pixel_rgba(1, 1, 1, 1);
int retval = 1;
m_image *image = m_image_new(w, h);
if (image) {
m_d_transform *transform = m_d_transform_rectangular(w, h, c, r);
if (transform) {
m_d_colour_t *colour = m_d_colour_minimal(white, black, white);
if (colour) {
m_d_render_scanline(image, transform, er, maxiters, colour);
double _Complex c3, c4a, c4b, c5, c3c2, c2c3;
m_d_nucleus(&c3, 0 + I * 1, 3, 64);
m_d_nucleus(&c4a, 0.25 + 0.5 * I, 4, 64);
m_d_nucleus(&c4b, 0.25 - 0.5 * I, 4, 64);
m_d_nucleus(&c5, 0.3 + 0.3 * I, 5, 64);
m_d_nucleus(&c3c2, c3 + I * 0.1, 6, 64);
m_d_nucleus(&c2c3, -1 - 0.25 + 0.25 * I, 6, 64);
double pt = 48;
draw_internal_ray(image, transform, 1, 0, "1/2", pt, green);
draw_internal_ray(image, transform, 1, 0, "1/3", pt, green);
draw_internal_ray(image, transform, 1, 0, "1/4", pt, green);
draw_internal_ray(image, transform, 1, 0, "1/5", pt, green);
draw_internal_ray(image, transform, 1, 0, "3/4", pt, green);
draw_internal_ray(image, transform, 2, -1, "0/1", pt, green);
draw_internal_ray(image, transform, 2, -1, "1/3", pt, green);
draw_internal_ray(image, transform, 3, c3, "0/1", 0.7 * pt, green);
draw_internal_ray(image, transform, 3, c3, "1/2", 0.7 * pt, green);
draw_internal_ray(image, transform, 3, c3, "1/3", 0.7 * pt, green);
draw_internal_ray(image, transform, 3, c3, "1/4", 0.7 * pt, green);
draw_internal_ray(image, transform, 3, c3, "3/4", 0.7 * pt, green);
draw_external_ray(image, transform, ".(01)", red, 0, 0);
draw_external_ray(image, transform, ".(10)", red, 0, 0);
draw_external_ray(image, transform, ".(001)", red, 32, 32);
draw_external_ray(image, transform, ".(010)", red, -48, 0);
draw_external_ray(image, transform, ".(011)", red, 0, 0);
draw_external_ray(image, transform, ".(100)", red, 0, 0);
draw_external_ray(image, transform, ".(0001)", red, 0, -16);
draw_external_ray(image, transform, ".(0010)", red, 16, 16);
draw_external_ray(image, transform, ".(1101)", red, 0, 0);
draw_external_ray(image, transform, ".(1110)", red, 0, 0);
draw_external_ray(image, transform, ".(00001)", red, 0, 0);
draw_external_ray(image, transform, ".(00010)", red, 0, 16);
draw_external_ray(image, transform, ".(001010)", red, -32, -32);
draw_external_ray(image, transform, ".(010001)", red, 0, 0);
draw_external_ray(image, transform, ".(010110)", red, 0, 0);
draw_external_ray(image, transform, ".(011001)", red, 0, 0);
draw_external_ray(image, transform, ".(001001010)", red, -48, -48);
draw_external_ray(image, transform, ".(001010001)", red, 0, 0);
draw_external_ray(image, transform, ".(001001001010)", red, 0, 0);
draw_external_ray(image, transform, ".(001001010001)", red, -16, -16);
draw_external_ray(image, transform, ".(010010001010)", red, 32, 0);
draw_external_ray(image, transform, ".(010010010001)", red, 0, 0);
draw_label(image, transform, 0, "1", 6 * pt, blue);
draw_label(image, transform, -1, "2", 3 * pt, blue);
draw_label(image, transform, c3, "3", 2 * pt, blue);
draw_label(image, transform, c4a, "4", 1.5 * pt, blue);
draw_label(image, transform, c4b, "4", 1.5 * pt, blue);
draw_label(image, transform, c5, "5", pt, blue);
draw_label(image, transform, c2c3, "6", pt, blue);
draw_label(image, transform, c3c2, "6", pt, blue);
m_image_save_png(image, filename);
retval = 0;
m_d_colour_delete(colour);
}
m_d_transform_delete(transform);
}
m_image_delete(image);
}
return retval;
}
Lisensi
Saya, pemilik hak cipta dari karya ini, dengan ini menerbitkan berkas ini di bawah ketentuan berikut:
Berkas ini dilisensikan di bawah lisensi Creative Commons Atribusi-Berbagi Serupa 4.0 Internasional.
- Anda diizinkan:
- untuk berbagi – untuk menyalin, mendistribusikan dan memindahkan karya ini
- untuk menggubah – untuk mengadaptasi karya ini
- Berdasarkan ketentuan berikut:
- atribusi – Anda harus mencantumkan atribusi yang sesuai, memberikan pranala ke lisensi, dan memberi tahu bila ada perubahan. Anda dapat melakukannya melalui cara yang Anda inginkan, namun tidak menyatakan bahwa pemberi lisensi mendukung Anda atau penggunaan Anda.
- berbagi serupa – Apabila Anda menggubah, mengubah, atau membuat turunan dari materi ini, Anda harus menyebarluaskan kontribusi Anda di bawah lisensi yang sama seperti lisensi pada materi asli.
Items portrayed in this file
menggambarkan
some value
17 Februari 2016
image/png
Riwayat berkas
Klik pada tanggal/waktu untuk melihat berkas ini pada saat tersebut.
Tanggal/Waktu | Miniatur | Dimensi | Pengguna | Komentar | |
---|---|---|---|---|---|
terkini | 17 Februari 2016 14.21 | 4.096 × 4.096 (1,54 MB) | CM | User created page with UploadWizard |
Penggunaan berkas
Halaman berikut menggunakan berkas ini:
Penggunaan berkas global
Wiki lain berikut menggunakan berkas ini:
- Penggunaan pada en.wiki-indonesia.club
- Penggunaan pada en.wikibooks.org
- Fractals/Iterations in the complex plane/Mandelbrot set interior
- Fractals/Iterations in the complex plane/def cqp
- Fractals/Mathematics/Newton method
- Fractals/mandelbrot-numerics
- Fractals/Iterations in the complex plane/wake
- Fractals/Iterations in the complex plane/subwake
- Fractals/mandelbrot-graphics
- Fractals/curves
- Penggunaan pada es.wiki-indonesia.club
- Penggunaan pada ml.wiki-indonesia.club