Derajat polinomial

Derajat polinomial adalah derajat tertinggi dari monomialnya (istilah individual) dengan koefisien tidak nol. Istilah orde biasanya digunakan dalam penyebutan derajat. Misalnya, dalam polinomial dapat dinyatakan sebagai memiliki tiga suku. Suku pertama memiliki derajat 5 (jumlah dari eksponen 2 dan 3), suku kedua memiliki derajat 1, dan suku terakhir memiliki derajat 0. Oleh karena itu, polinomial ini memiliki derajat 5, yaitu tingkat tertinggi dari seluruh suku.

Untuk menentukan derajat polinomial yang tidak dalam bentuk standar (misalnya: ), yang pertama kali harus dilakukan adalah menjabarkan dan menggabungkan suku-suku sejenis. Sebagai contoh memiliki derajat 1.

Nama polinomial menurut derajat

sunting

Nama-nama berikut diberikan untuk polinomial sesuai derajatnya:[1][2][3]

  • Kasus khusus - nol
  • Derajat 0 - konstanta tidak nol [4]
  • Derajat 1 - linear
  • Derajat 2 - kuadratik
  • Derajat 3 - kubik
  • Derajat 4 - kuartik (atau bikuadratik jika semua suku memiliki derajat genap)
  • Derajat 5 - quintik
  • Derajat 6 - sekstik (heksik)
  • Derajat 7 - septik (heptik)

Untuk derajat yang lebih tinggi, terdapat nama-nama yang diusulkan,[5] namun jarang digunakan:

  • Derajat 8 – oktik
  • Derajat 9 – nonik
  • Derajat 10 – dekik

Contoh lain

sunting
  • Polinomial   adalah polinomial nonik
  • Polinomial   polinomial kubik
  • Polinomial  Polinomial kuintik (as the   are cancelled out)

Perilaku dalam operasi polinomial

sunting

Penjumlahan

sunting

Jumlah atau selisih dari dua polinomial kurang dari atau sama dengan besar derajatnya.

 .
 .
  • Derajat   adalah 3. Perhatikan bahwa 3 ≤ maks {3, 2}
  • Derajat   adalah 2. Perhatikan bahwa 2 ≤ maks {3, 3}

Perkalian skalar

sunting

Derajat perkalian polinomial dengan skalar bukan nol sama dengan derajat polinomialnya

 .
  • Derajat   adalah 2, seperti derajat  .

Perkalian

sunting

Derajat dari perkalian dua polinomial pada bidang atau domain integral adalah jumlah dari derajatnya:

 .
  • Derajat   adalah 3 + 2 = 5.

Komposisi

sunting

Derajat dari komposisi dua polinomial non-konstanta   dan  pada bidang atau domain integral adalah perkalian dari derajatnya:

 .
  • Jika  ,  , dan , dimana meiliki derajat 6.

Referensi

sunting
  1. ^ "Names of Polynomials". November 25, 1997. Diakses tanggal 5 February 2012. 
  2. ^ Mac Lane and Birkhoff (1999) define "linear", "quadratic", "cubic", "quartic", and "quintic". (p. 107)
  3. ^ King (2009) defines "quadratic", "cubic", "quartic", "quintic", "sextic", "septic", and "octic".
  4. ^ Shafarevich (2003) says of a polynomial of degree zero,  : "Such a polynomial is called a constant because if we substitute different values of x in it, we always obtain the same value  ." (p. 23)
  5. ^ James Cockle proposed the names "sexic", "septic", "octic", "nonic", and "decic" in 1851. (Mechanics Magazine, Vol. LV, p. 171)