Fungsi Möbius, yang dilambangkan sebagai μ(n), merupakan fungsi perkalian dalam teori bilangan. Diperkenalkan oleh seorang matematikawan Jerman bernama August Ferdinand Möbius pada tahun 1832,[i][ii][2] fungsi ini ditemukan di cabang teori bilangan elementer dan analitik, dan fungsi ini seringkali muncul sebagai bagian dari fungsi yang dinamakan dengan serupa, yaitu rumus inversi Möbius. Setelah karya Gian-Carlo Rota yang diterbitkan sekitar tahun 1960-an, perumuman dari fungsi Möbius diperkenalkan dalam kombinatorik, dan dilambangkan dengan serupa, yaitu μ(x).

Catatan dan referensi

sunting

Catatan kaki

sunting
  1. ^ (Hardy & Wright 1980, Catatan di Bab XVI):

    "... μ(n) occurs implicitly in the works of Euler as early as 1748, but Möbius, in 1832, was the first to investigate its properties systematically."

    Terjemahan:

    "... [fungsi] μ(n) muncul secara implisit dalam karya Euler yang diterbitkan paling awal, yaitu pada tahun 1748. Namun pada tahun 1832, Möbius adalah tokoh yang pertama kali menemukan sifat-sifatnya secara sistematis."

  2. ^ Dalam buku Disquisitiones Arithmeticae, Carl Friedrich Gauss memperlihatkan bahwa jumlah dari akar primitif (mod p) adalah μ(p − 1), namun ia tidak memakai fungsi tersebut lebih lanjut, khususnya fungsi inversi Möbius.[1]

Referensi

sunting
  1. ^ Gauss 1986, Art. 81.
  2. ^ Möbius 1832, hlm. 105–123.

Sumber

sunting