Dalam kimia organik, reaksi perisiklik adalah suatu jenis reaksi organik di mana keadaan transisi molekul memiliki suatu geometri siklik, dan reaksi berjalan secara serentak. Reaksi perisiklik biasanya merupakan suatu reaksi penataan ulang.

Contoh reaksi perisiklik: penataan ulang norkaradiena–sikloheksatriena
Contoh reaksi perisiklik: penataan ulang norkaradiena–sikloheksatriena

Secara umum, reaksi ini dianggap sebagai proses kesetimbangan, walaupun memungkinkan untuk mendorong reaksi dalam satu arah dengan merancang suatu reaksi di mana produk berada pada suatu tingkatan energi yang rendah secara signifikan; hal ini disebabkan oleh interpretasi unimolekular terhadap prinsip Le Chatelier.

Reaksi perisiklik terkadang memiliki keterkaitan dengan proses radikal. Beberapa reaksi perisiklik, seperti sikloadisi [2+2], 'kontroversial' karena mekanismenya tidak secara definitif diketahui serentak (atau mungkin bergantung pada sistem yang reaktif). Reaksi perisiklik juga sering memiliki analog dikatalisasi logam, walaupun biasanya ini juga tidak secara teknis perisiklik, karena mereka melanjutkan melalui zat antara yang distabilkan logam, dan dengan demikian tidak serentak.

Karakteristik

sunting
 
Perbedaan mekanisme reaksi perisiklik dan reaksi bertahap pada SIkloadisi 1,3-Dipolar[1].

Karakteristik yang membedakan reaksi perisiklik dengan reaksi lain adalah:[2]

  1. Reaksi relatif tidak mudah terpengaruh dengan perubahan pelarut, adanya inisiator radikal, atau (dengan beberapa pengecualian) oleh katalis elektrofilik atau nukleofilik.
  2. Reaksi melewati serangkaian peristiwa pemutusan ikatan dan pembuatan ikatan secara simultan (bersama) dalam satu langkah kinetik, seringkali dengan stereospesifikitas tinggi.
  3. Sesuai dengan 1 & 2, tidak ada ionik, radikal bebas atau zat antara lain yang dapat dilihat yang terletak pada jalur reaksi.

Tipe reaksi perisiklik

sunting

Kelas utama pada reaksi perisiklik diantaranya:

Nama Perubahan ikatan kimia
Sigma Pi
Reaksi elektrosiklik + 1 -1
Sikloadisi +2 -2
Reaksi sigmatropik 0 0
Reaksi transfer gugus fungsional + 1 -1
Reaksi keletropik + 2 - 2
Reaksi diotropik 0 0

Reaksi perisiklik dalam stereokimia

sunting

Sudah sangat diketahui bahwa diena hanya bisa masuk dalam reaksi sikloadisi dengan dienofil dalam bentuk cisoid dan laju reaksi dengan diena rantai terbuka bergantung pada proporsi keseimbangan dari konformer cisoid / transoid. Sehingga substituen di dalam diena secara signifikan dapat mempengaruhi laju reaksi tidak hanya karena karakter elektroniknya tetapi dengan pengaruhnya terhadap proporsi relatif dari konformer yang berbeda.

Karenanya pada contoh butadiena I tersubstitusi- cis I kurang reaktif dibanding trans isomer II nya karena meruahnya R tidak disukai pada konformasi cisoid. Substituen-2 yang meruah pada diena disukai oleh konformasi cisoid melebihi transoid sehingga diena dalam hal ini menjadi lebih reaktif.[3]

 
Aplikasi reaksi perisiklik pada Stereokimia dalam sikloadisi dari An Introduction to Orbital Symmetry and Pericyclic Reactions 2006 - Prof. Dr. Fathy Mohamed Abdelrazek

Reaksi perisiklik dalam biokimia

sunting

Reaksi perisiklik juga terdapat dalam beberapa proses biologis:

 
  
 
  • Konversi berkatalis isokorismat piruvat liase pada isokorismat menjadi salisilat dan piruvat[6]
 

Lihat pula

sunting

Referensi

sunting
  1. ^ Huisgen, R. Kinetics and Mechanism of 1,3-Dipolar Cycloadditions. Angew. Chem. Int. Ed. Engl. 2, pp. 633-645 (1963)
  2. ^ Reusch, William. "Non-ionic Chemical Reactions". www2.chemistry.msu.edu (dalam bahasa Inggris). Diakses tanggal 2020-08-25. 
  3. ^ An Introduction to Orbital Symmetry and Pericyclic Reactions 2006 - Prof. Dr. Fathy Mohamed Abdelrazek
  4. ^ Biosynthetic and Biomimetic Electrocyclizations. Chem. Rev., Volume 105, Issue 12, 2005, Pages 4757-4778 Christopher M. Beaudry, Jeremiah P. Malerich, and Dirk Trauner doi:10.1021/cr0406110
  5. ^ J. T. Arnason, Rachel Mata, John T. Romeo. Phytochemistry of Medicinal Plant (2nd Edition).1995 (Springer) ISBN 0-306-45181-6, ISBN 978-0-306-45181-2
  6. ^ Isochorismate Pyruvate Lyase: A Pericyclic Reaction Mechanism? Michael S. DeClue, Kim K. Baldridge, Dominik E. Künzler, Peter Kast, and Donald Hilvert J. Am. Chem. Soc.; 2005; 127(43) pp 15002 - 15003; (Communication) DOI:10.1021/ja055871t