Segiempat garis singgung

(Dialihkan dari Segiempat tangensial)

Dalam geometri Euklides, segiempat garis singgung adalah segiempat yang bersifat cembung dengan keempat sisinya menyinggung sebuah lingkaran, dan lingkaran itu merupakan lingkaran dalam.

Sebuah segiempat garis singgung bersama dengan lingkaran dalamnya

Ciri-ciri

sunting

Menurut teorema Pitot, dua pasangan sisi yang berhadapan di sebuah segiempat garis singgung itu sama panjang, sehingga jumlah darinya sama dengan semiperimeter dari segiempat  

Sebaliknya, jumlah panjang sisi   di sebuah segiempat cembung harus tangensial.[1]

Luas tanpa menggunakan trigonometri

sunting

Luas dari segiempat garis singgung dirumuskan sebagai   dengan   adalah semiperimeter dan   adalah jari-jari lingkaran dalam. Rumus lainnya untuk luas dari segiempat adalah[2]   dengan   dan   adalah garis diagonal, serta   adalah sisi-sisi dari segiempat garis singgung.

Luas dari segiempat garis singgung juga dapat dinyatakan hanya dengan diketahui keempat panjang garis singgung  [3]  

Luas dengan menggunakan trigonometri

sunting

Luas dari segiempat garis singgung dapat diketahui dengan menggunakan panjang sisi   beserta dua buah sudut hadapan[4]  

Untuk diketahui panjang sisinya, luasnya akan maksimum ketika segiempat adalah siklik dan bicentric. Oleh karena itu, luas dari segiempat garis singgung adalah   sebab sudut hadapannya adalah suplementer. Rumus ini dapat dibuktikan dengan cara lain menggunakan kalkulus.[5]

Rumus lain untuk luas dari segiempat garis singgung   yang melibatkan dua sudut hadapan adalah[6]   dengan   adalah pusat lingkaran dalam.

Terlebih lagi, luasnya dapat dinyatakan menggunakan dua sisi yang berdampingan dan dua sudut hadapan sebagai[7]  

Catatan kaki

sunting
  1. ^ Josefsson 2011, hlm. 65; Andreescu & Enescu 2006, hlm. 64–68.
  2. ^ Durell & Robson 2003, hlm. 28–30.
  3. ^ Josefsson 2010.
  4. ^ Durell & Robson 2003, hlm. 28–30; Siddons & Hughes 1929, hlm. 203; Grinberg 2008, hlm. 11; Yiu 1998, hlm. 156–157.
  5. ^ Hoyt 1986.
  6. ^ Grinberg 2008, hlm. 19.
  7. ^ Durell 2003, hlm. 28–30.

Referensi

sunting
  • Andreescu, Titu; Enescu, Bogdan (2006), Mathematical Olympiad Treasures, Birkhäuser .
  • Durell, C.V.; Robson, A. (2003), Advanced Trigonometry, Dover reprint .
  • Siddons, A.W.; Hughes, R.T. (1929), Trigonometry, Cambridge Univ. Press .