Segitiga siku-siku
Segitiga siku-siku adalah segitiga yang salah satu sudutnya merupakan sudut siku-siku (yaitu, sudut 90 derajat). Hubungan antara sisi dan sudut segitiga siku-siku adalah dasar untuk trigonometri.
Sisi yang berseberangan dengan sudut siku-siku disebut hypotenuse (sisi c pada gambar). Sisi-sisi yang berdekatan dengan sudut kanan disebut kaki (atau catheti, singular: cathetus). Sisi a dapat diidentifikasi sebagai sisi yang berdekatan dengan sudut B dan berlawanan dengan (atau berlawanan) sudut A, sedangkan sisi b adalah sisi yang berdekatan dengan sudut A dan berlawanan dengan sudut B.
Jika panjang ketiga sisi dari segitiga siku-siku adalah bilangan bulat, segitiga tersebut disebut segitiga Pythagoras dan panjang sisinya secara kolektif dikenal sebagai triple Pythagoras.
Sifat utama
suntingLuas
suntingSeperti halnya segitiga apa pun, luasnya sama dengan satu setengah alas yang dikalikan dengan tinggi yang sesuai. Dalam segitiga siku-siku, jika satu kaki diambil sebagai alas maka yang lainnya adalah tinggi, maka luas segitiga siku-siku adalah satu setengah produk dari kedua kaki. Sebagai rumus, Luas T adalah
di mana a dan b adalah kaki-kaki segitiga. Jika incircle bersinggungan dengan AB miring pada titik P, maka menunjukkan semi-perimeter(a + b + c) / 2 sebagai s yang kita miliki PA = s − a dan PB = s − b, dan luas diberikan oleh
Rumus ini hanya berlaku untuk segitiga siku-siku.[1]
Tinggi
suntingJika tinggi diambil dari titik dengan sudut kanan ke sisi miring maka segitiga dibagi menjadi dua segitiga yang lebih kecil yang keduanya mirip dengan aslinya dan oleh karena itu mirip satu sama lain. Dari ini:
- Ketinggian untuk sisi miring adalah rata-rata geometrik (rata-rata proporsional) dari dua segmen sisi miring.[2]
- Setiap kaki dari segitiga adalah proporsi rata-rata dari sisi miring dan segmen sisi miring yang berdekatan dengan kaki.
Dalam persamaan,
- (ini kadang-kadang dikenal sebagai teorema tinggi segitiga siku-siku)
di mana a, b, c, d, e, f adalah seperti yang ditunjukkan pada diagram.[3] Jadi
Selain itu, tinggi ke sisi miring terkait dengan kaki-kaki segitiga kanan[4][5]
Untuk solusi persamaan ini dalam nilai integer a, b, f, dan c, lihat di sini.
Tinggi dari kedua kaki bertepatan dengan kaki lainnya. Karena ini berpotongan di sudut siku-siku, orthocenter segitiga siku-siku — perpotongan tiga ketinggiannya — bertepatan dengan titik puncak sudut siku-siku.
Teori Pythagoras
suntingTeorema Pythagoras menyatakan bahwa:
Dalam setiap segitiga siku-siku, Luas dari bujur sangkar yang sisinya adalah sisi miring (sisi yang berlawanan dengan sudut kanan) sama dengan jumlah area kuadrat yang sisi-sisinya adalah dua kaki (dua sisi yang bertemu pada sudut kanan).
Ini dapat dinyatakan dalam bentuk persamaan sebagai
di mana c adalah panjang sisi miring, dan a dan b adalah panjang dari dua sisi yang tersisa.
Tripel Pythagoras adalah nilai integer dari a, b, c yang memenuhi persamaan ini.
Inradius dan circumradius
suntingJari-jari incircle dari segitiga siku-siku dengan kaki a dan b dan sisi miring c adalah
Jari-jari lingkaran adalah setengah panjang sisi miring,
Jadi jumlah dari circumradius dan inradius adalah setengah dari jumlah kaki:[6]
Salah satu kaki dapat diekspresikan dalam istilah inradius dan kaki lainnya sebagai
Karakterisasi
suntingSegitiga ABC dengan sisi , semiperimeter s, Luas T, tinggi h berlawanan dengan sisi terpanjang, circumradius R, inradius r, exradii ra, rb, rc (bersinggungan dengan a, b, c masing-masing), dan median ma, mb, mc adalah segitiga siku-siku jika dan hanya jika salah satu dari pernyataan dalam enam kategori berikut ini benar. Semuanya tentu saja juga properti dari segitiga siku-siku, karena karakterisasi adalah kesetaraan.
Sisi dan semiperimeter
suntingSudut
suntingLuas
suntingInradius dan exradii
suntingTinggi dan median
sunting- [14]
- Panjang satu median sama dengan circumradius.
- Tinggi yang terpendek (yang dari sudut dengan sudut terbesar) adalah rata-rata geometris dari segmen garis yang membagi sisi yang berlawanan (terpanjang) menjadi. Ini adalah teorema ketinggian segitiga siku-siku.
Circumcircle dan incircle
sunting- Segitiga dapat ditulis dalam setengah lingkaran, dengan satu sisi bertepatan dengan keseluruhan diameter (teorema Thales).
- Circumcenter adalah titik tengah dari sisi terpanjang.
- Sisi terpanjang adalah diameter lingkaran
- Lingkaran itu bersinggungan dengan lingkaran sembilan titik.[15]
- Orthocenter terletak di lingkaran.[16]
- Jarak antara incenter dan orthocenter sama dengan .[16]
Rasio trigonometri
suntingFungsi trigonometri untuk sudut akut dapat didefinisikan sebagai rasio sisi-sisi segitiga siku-siku. Untuk sudut tertentu, segitiga siku-siku dapat dibangun dengan sudut ini, dan sisi berlabel berlawanan, berdekatan dan miring dengan referensi ke sudut ini sesuai dengan definisi di atas. Rasio sisi-sisi ini tidak bergantung pada segitiga siku-siku tertentu yang dipilih, tetapi hanya pada sudut yang diberikan, karena semua segitiga yang dibangun dengan cara ini serupa. Jika, untuk sudut tertentu α, sisi yang berlawanan, sisi yang berdekatan dan sisi miring masing-masing diberi label O, A dan H, maka fungsi trigonometri adalah
Untuk ekspresi fungsi hiperbolik sebagai rasio sisi-sisi segitiga siku-siku, lihat segitiga hiperbolik sektor hiperbolik.
Segitiga siku-siku khusus
suntingNilai fungsi trigonometri dapat dievaluasi dengan tepat untuk sudut tertentu menggunakan segitiga siku-siku dengan sudut khusus. Ini termasuk segitiga 30-60-90 yang dapat digunakan untuk mengevaluasi fungsi trigonometri untuk kelipatan π/6, dan segitiga 45-45-90 yang dapat digunakan untuk mengevaluasi fungsi trigonometri untuk kelipatan π/4.
Segitiga Kepler
suntingBiarkan H, G, dan A menjadi rata-rata harmonik, rata-rata geometrik, dan rata-rata aritmatika dari dua bilangan positif a dan b dengan a > b. Jika segitiga siku-siku memiliki kaki H dan G dan sisi miring A, maka.[17]
dan
dimana adalah rasio emas Karena sisi-sisi segitiga siku-siku ini berada dalam perkembangan geometris, ini adalah segitiga Kepler.
Teori Thales
suntingTeorema Thales menyatakan bahwa jika A adalah titik mana pun dari lingkaran dengan diameter BC (kecuali B atau C sendiri) ABC adalah segitiga siku-siku di mana A adalah sudut kanan. Kebalikannya menyatakan bahwa jika segitiga siku-siku tertulis dalam lingkaran maka sisi miring akan menjadi diameter lingkaran. Yang wajar adalah bahwa panjang sisi miring adalah dua kali jarak dari sudut sudut kanan ke titik tengah sisi miring. Juga, pusat lingkaran yang membatasi segitiga kanan adalah titik tengah sisi miring dan jari-jarinya adalah setengah panjang sisi miring.
Garis euler
suntingDalam segitiga siku-siku, garis euler berisi median pada sisi miring - yaitu, melewati titik sudut kanan dan titik tengah sisi yang berlawanan dengan titik itu. Ini karena orthocenter segitiga kanan, persimpangan ketinggiannya, jatuh pada sudut siku-siku sementara circumcenter-nya, persimpangan garis-garis sisi yang tegak lurus, berada di titik tengah sisi miring.
Referensi
sunting- ^ Di Domenico, Angelo S., "A property of triangles involving area", Mathematical Gazette 87, July 2003, pp. 323-324.
- ^ Kesalahan pengutipan: Tag
<ref>
tidak sah; tidak ditemukan teks untuk ref bernamaPosamentier
- ^ Wentworth p. 156
- ^ Voles, Roger, "Integer solutions of ," Mathematical Gazette 83, July 1999, 269–271.
- ^ Richinick, Jennifer, "The upside-down Pythagorean Theorem," Mathematical Gazette 92, July 2008, 313–317.
- ^ Inequalities proposed in “Crux Mathematicorum”, [1].
- ^ "Triangle right iff s = 2R + r, Art of problem solving, 2011". Diarsipkan dari versi asli tanggal 2014-04-28. Diakses tanggal 2020-06-02.
- ^ Kesalahan pengutipan: Tag
<ref>
tidak sah; tidak ditemukan teks untuk ref bernamaAndreescu2
- ^ "Properties of Right Triangles". Diarsipkan dari versi asli tanggal 2011-12-31. Diakses tanggal 2020-06-02.
- ^ a b Kesalahan pengutipan: Tag
<ref>
tidak sah; tidak ditemukan teks untuk ref bernamaAndreescu3
- ^ a b c CTK Wiki Math, A Variant of the Pythagorean Theorem, 2011, [2] Diarsipkan 2013-08-05 di Wayback Machine..
- ^ Darvasi, Gyula (March 2005), "Converse of a Property of Right Triangles", The Mathematical Gazette, 89 (514): 72–76.
- ^ Bell, Amy (2006), "Hansen's Right Triangle Theorem, Its Converse and a Generalization" (PDF), Forum Geometricorum, 6: 335–342
- ^ Kesalahan pengutipan: Tag
<ref>
tidak sah; tidak ditemukan teks untuk ref bernamaCrux2
- ^ Andreescu, Titu and Andrica, Dorian, "Complex Numbers from A to...Z", Birkhäuser, 2006, pp. 109-110.
- ^ a b Kesalahan pengutipan: Tag
<ref>
tidak sah; tidak ditemukan teks untuk ref bernamaCrux4
- ^ Di Domenico, A., "The golden ratio — the right triangle — and the arithmetic, geometric, and harmonic means," Mathematical Gazette 89, July 2005, 261. Also Mitchell, Douglas W., "Feedback on 89.41", vol 90, March 2006, 153-154.
- (Inggris) Weisstein, Eric W. "Right Triangle". MathWorld.
- Wentworth, G.A. (1895). A Text-Book of Geometry. Ginn & Co.