Spektogram

gambaran spektrum frekuensi suara atau sinyal lain seiring waktu

Spektogram adalah grafik yang menggambarkan perubahan frekuensi dan intensitas gelombang menurut sumbu waktu. Spektogram digunakan dalam bidang musik, linguistik, sonar, radar, pengolahan wicara, seismologi, dan lain-lain. Spektogram suara dapat digunakan untuk mengenali wicara secara fonetik dan untuk menganalisis ucapan hewan.

Spektogram ucapan bahasa Inggris, "Nineteenth century." Sumbu tegak menandakan frekuensi dan sumbu mendatar menandakan waktu. Legenda di sebelah kanan menunjukkan intensitas suaranya.
Spektogram tiga dimensi spektrum gelombang radio dari pengisi data baterai sepanjang waktu

Spektogram bisa dibuat dengan spektrometer optis, kumpulan band-pass filter, transformasi Fourier, atau transformasi wavelet.

Spektogram biasa ditampilkan sebagai peta kalor, yaitu sebagai peta yang intensitasnya digambarkan melalui warna atau kecerahan.

Format

sunting

Format yang umum adalah grafik dengan dua dimensi geometris: satu sumbu untuk waktu dan sumbu lainnya untuk frekuensi; sumbu ketiganya untuk amplitudo yang digambarkan sebagai warna atau kecerahan tertentu.

Ada banyak variasi untuk format ini. Ada yang menukar sumbu waktu dan frekuensi sehingga waktu berjalan ke atas/bawah. Ada pula yang menggunakan ketinggian (tiga dimensi) untuk amplitudo alih-alih warna atau kecerahan tertentu. Sumbu untuk frekuensi dan amplitudo bisa berupa linear atau logaritmik tergantung penggunaan. Audio biasa ditampilkan dalam sumbu logaritmik untuk amplitudonya (misal dalam desibel) dan sumbu untuk frekuensi bisa menggunakan skala linear untuk memperjelas hubungan harmoninya atau skala logaritmik untuk memperjelas hubungan penadaan dan musiknya.

Pembuatan

sunting

Spektogram cahaya bisa dibuat dengan spektrometer optik seiring waktu.

Spektogram bisa dibuat dari sinyal dalam domain waktu dengan salah satu dari berikut: (1) perkiraan dari hasil rangkaian band-pass filter (satu-satunya cara sebelum pengolahan sinyal digital modern) dan (2) perhitungan dari sinyal menggunakan transformasi Fourier. Kedua cara tersebut menghasilkan representasi waktu–frekuensi yang berbeda, tetapi sebanding dalam keadaan tertentu.

Batasan dan sintesis ulang

sunting

Penerapan

sunting

Lihat pula

sunting

Pranala luar

sunting