Tian Gang
Matematikawan Tiongkok (lahir 1958)
Tian Gang (Hanzi: 田刚; lahir 24 November 1958)[1] adalah seorang matematikawan asal Tiongkok. Ia menjadi profesor matematika di Universitas Peking dan Higgins Professor Emeritus di Universitas Princeton.
Tian Gang | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lahir | 24 November 1958 Nanjing, Jiangsu, Tiongkok | ||||||||||||||
Kebangsaan | Tiongkok | ||||||||||||||
Almamater | Universitas Harvard Universitas Peking Universitas Nanjing | ||||||||||||||
Dikenal atas | Konjektur Yau-Tian-Donaldson K-stabilitas | ||||||||||||||
Penghargaan | Veblen Prize (1996) Alan T. Waterman Award (1994) | ||||||||||||||
Karier ilmiah | |||||||||||||||
Bidang | Matematika | ||||||||||||||
Institusi | Universitas Princeton Universitas Peking | ||||||||||||||
Disertasi | Kähler Metrics on Algebraic Manifolds (1988) | ||||||||||||||
Pembimbing doktoral | Shing-Tung Yau | ||||||||||||||
Mahasiswa doktoral | Nataša Šešum | ||||||||||||||
|
Publikasi pilihan
suntingArtikel riset
T87a. | Tian, Gang. Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric. Mathematical aspects of string theory (San Diego, Calif., 1986), 629–646, Adv. Ser. Math. Phys., 1, World Sci. Publishing, Singapore, 1987. |
T87b. | Tian, Gang. On Kähler-Einstein metrics on certain Kähler manifolds with c1(M) > 0. Invent. Math. 89 (1987), no. 2, 225–246. |
TY87. | Tian, Gang; Yau, Shing-Tung. Kähler-Einstein metrics on complex surfaces with C1>0. Comm. Math. Phys. 112 (1987), no. 1, 175–203. |
T90a. | Tian, Gang. On a set of polarized Kähler metrics on algebraic manifolds. J. Differential Geom. 32 (1990), no. 1, 99–130. |
T90b. | Tian, G. On Calabi's conjecture for complex surfaces with positive first Chern class. Invent. Math. 101 (1990), no. 1, 101–172. |
TY90. | Tian, G.; Yau, Shing-Tung. Complete Kähler manifolds with zero Ricci curvature. I. J. Amer. Math. Soc. 3 (1990), no. 3, 579–609. |
TY91. | Tian, Gang; Yau, Shing-Tung. Complete Kähler manifolds with zero Ricci curvature. II. Invent. Math. 106 (1991), no. 1, 27–60. |
DT92. | Ding, Wei Yue; Tian, Gang. Kähler-Einstein metrics and the generalized Futaki invariant. Invent. Math. 110 (1992), no. 2, 315–335. |
DT95. | Ding, Weiyue; Tian, Gang. Energy identity for a class of approximate harmonic maps from surfaces. Comm. Anal. Geom. 3 (1995), no. 3-4, 543–554. |
RT95. | Ruan, Yongbin; Tian, Gang. A mathematical theory of quantum cohomology. J. Differential Geom. 42 (1995), no. 2, 259–367. |
ST97. | Siebert, Bernd; Tian, Gang. On quantum cohomology rings of Fano manifolds and a formula of Vafa and Intriligator. Asian J. Math. 1 (1997), no. 4, 679–695. |
T97. | Tian, Gang. Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130 (1997), no. 1, 1–37. |
LT98a. | Li, Jun; Tian, Gang. Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds. Topics in symplectic 4-manifolds (Irvine, CA, 1996), 47–83, First Int. Press Lect. Ser., I, Int. Press, Cambridge, MA, 1998. |
LT98b. | Li, Jun; Tian, Gang. Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties. J. Amer. Math. Soc. 11 (1998), no. 1, 119–174. |
LT98c. | Liu, Gang; Tian, Gang. Floer homology and Arnold conjecture. J. Differential Geom. 49 (1998), no. 1, 1–74. |
T00a. | Tian, Gang. Gauge theory and calibrated geometry. I. Ann. of Math. (2) 151 (2000), no. 1, 193–268. |
TZ06. | Tian, Gang; Zhang, Zhou. On the Kähler-Ricci flow on projective manifolds of general type. Chinese Ann. Math. Ser. B 27 (2006), no. 2, 179–192. |
ST07. | Song, Jian; Tian, Gang. The Kähler-Ricci flow on surfaces of positive Kodaira dimension. Invent. Math. 170 (2007), no. 3, 609–653. |
CT08. | Chen, X.X.; Tian, G. Geometry of Kähler metrics and foliations by holomorphic discs. Publ. Math. Inst. Hautes Études Sci. 107 (2008), 1–107. |
T15. | Tian, Gang. K-stability and Kähler-Einstein metrics. Comm. Pure Appl. Math. 68 (2015), no. 7, 1085–1156. |
Buku
T00b. | Tian, Gang. Canonical metrics in Kähler geometry. Notes taken by Meike Akveld. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2000. vi+101 pp. ISBN 3-7643-6194-8 |
MT07. | Morgan, John; Tian, Gang. Ricci flow and the Poincaré conjecture. Clay Mathematics Monographs, 3. American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2007. xlii+521 pp. ISBN 978-0-8218-4328-4 |
MT14. | Morgan, John; Tian, Gang. The geometrization conjecture. Clay Mathematics Monographs, 5. American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2014. x+291 pp. ISBN 978-0-8218-5201-9 |
Referensi
sunting- ^ "1996 Oswald Veblen Prize" (PDF). AMS. 1996.