Pengguna:Dedhert.Jr/Uji halaman 01/22: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib)
Dedhert.Jr (bicara | kontrib)
 
(1 revisi perantara oleh pengguna yang sama tidak ditampilkan)
Baris 52:
<math display=block>d^2(p,q) = (p_1 - q_1)^2 + (p_2 - q_2)^2+\cdots+(p_i - q_i)^2+\cdots+(p_n - q_n)^2.</math>
 
Selain penerapannya dalam membandingkan jarak, jarak Euklides kuadrat merupakan alat penting di bidang [[statistika]]. Jarak tersebut dipakai dalam metode [[kuadrat terkecil]], sebuah metode statistik penyuaian (''method of fitting statistical'') yang mengestimasi data dengan meminimum rerata dari jarak kuadrat di antara nilai yang diamati dan nilai yang diestimasi,<ref>{{citation|title=Basic Statistics in Multivariate Analysis|series=Pocket Guide to Social Work Research Methods|first1=Karen A.|last1=Randolph|author1-link=Karen Randolph|first2=Laura L.|last2=Myers|publisher=Oxford University Press|year=2013|isbn=978-0-19-976404-4|page=116|url=https://books.google.com/books?id=WgSnudjEsrMC&pg=PA116}}</ref> dan dipakai sebagai bentuk [[Deret divergen|divergensi]] sederhana untuk membandingkan [[distribusi probabilitas]].<ref>{{citation
| last = Csiszár | first = I. | author-link = Imre Csiszár
| doi = 10.1214/aop/1176996454
Baris 63:
| year = 1975}}</ref> The addition of squared distances to each other, as is done in least squares fitting, corresponds to an operation on (unsquared) distances called [[Pythagorean addition]].<ref>{{citation |author=Moler, Cleve and Donald Morrison |title=Replacing Square Roots by Pythagorean Sums |journal=IBM Journal of Research and Development |volume=27 |issue=6 |pages=577–581 |year=1983 |url=http://www.research.ibm.com/journal/rd/276/ibmrd2706P.pdf |doi=10.1147/rd.276.0577 | citeseerx = 10.1.1.90.5651 }}</ref> Dalam [[analisis kluster]], jarak kuadrat dapat dipakai untuk memperkuat efek dari jarak yang lebih panjang.<ref name=spencer>{{citation|title=Essentials of Multivariate Data Analysis|first=Neil H.|last=Spencer|publisher=CRC Press|year=2013|isbn=978-1-4665-8479-2|contribution=5.4.5 Squared Euclidean Distances|page=95|contribution-url=https://books.google.com/books?id=EG3SBQAAQBAJ&pg=PA95}}</ref>
 
Jarak Euklides kuadrat tidak membentuk ruang metrik, sebab tidak memenuhi ketaksamaan segitiga.<ref>{{citation|last1=Mielke|first1=Paul W.|last2=Berry|first2=Kenneth J.|editor1-last=Brown|editor1-first=Timothy J.|editor2-last=Mielke|editor2-first=Paul W. Jr.|contribution=Euclidean distance based permutation methods in atmospheric science|doi=10.1007/978-1-4757-6581-6_2|pages=7–27|publisher=Springer|title=Statistical Mining and Data Visualization in Atmospheric Sciences|year=2000}}</ref> Akan tetapi, jaraknya bersifat mulus, yakni berupa [[fungsi cembung]] sempurna dari dua titik, tidak seperti jarak biasa yang tidak mulus (mendekati pasangan dari titik yang sama) dan cembung (tetapi bukan cembung sempurna). Karena itu, jarak Euklides kuadrat seringkali dipakalidipakai dalam [[teori optimisasi]], sebab jarak tersebut memungkinkan pemakaian [[analisis cembung]]. Selain itu, karena penguadratan merupakan fungsi monotonik dari nilai non-negatif, maka peminimuman jarak kuadrat serupaekuivalen dengan peminimuman jarak Euklides, sehingga masalah optimisasi juga serupaekuivalen dengan masalah yang sama, tetapi penyelesaiannya menjadi lebih mudah ketika memakai jarak kuadrat.<ref>{{citation|title=Maxima and Minima with Applications: Practical Optimization and Duality|volume=51|series=Wiley Series in Discrete Mathematics and Optimization|first=Wilfred|last=Kaplan|publisher=John Wiley & Sons|year=2011|isbn=978-1-118-03104-9|page=61|url=https://books.google.com/books?id=bAo6KNZcUP0C&pg=PA61}}</ref>
 
Kumpulan dari semua jarak kuadrat di antara pasangan titik dari himpunan terhingga dapat disimpan dalam sebuah [[matriks jarak Euklides]], serta dipakai ke bentuk tersebut dalam geometri jarak.<ref>{{citation|title=Euclidean Distance Matrices and Their Applications in Rigidity Theory|first=Abdo Y.|last=Alfakih|publisher=Springer|year=2018|isbn=978-3-319-97846-8|page=51|url=https://books.google.com/books?id=woJyDwAAQBAJ&pg=PA51}}</ref>
 
== Perumuman ==
Dalam cabang matematika lebih lanjut, saat jarak Euklides dipandang sebagai [[ruang vektor]], jaraknya diiringi dengan [[Norma (matematika)|norma]] yang disebut sebagai [[Norma (matematika)#Norma Euklides|norma Euklides]], didefinisikan sebagai jarak dari masing-masing vektor yang berawal dari [[Titik asal (matematika)|titik asal]]. One of the important properties of this norm, relative to other norms, is that it remains unchanged under arbitrary rotations of space around the origin.<ref>{{citation|title=Relativistic Celestial Mechanics of the Solar System|first1=Sergei|last1=Kopeikin|first2=Michael|last2=Efroimsky|first3=George|last3=Kaplan|publisher=John Wiley & Sons|year=2011|isbn=978-3-527-63457-6|page=106|url=https://books.google.com/books?id=uN5_DQWSR14C&pg=PA106}}</ref> ByMenurut [[Dvoretzky'steorema theoremDvoretzky]], every finite-dimensionalsetiap [[normedruang vectorvektor spacebernorma]] hasdimensi aterhingga high-dimensionalmempunyai subspacesubruang ondimensi whichtinggi thedengan normnorma isyang approximatelykira-kira Euclidean;dekat thedengan Euclideannorma normEuklides, issatu-satunya thenorma onlyyang normada withdi thissifat propertytersebut.<ref>{{citation|last=Matoušek|first=Jiří|author-link=Jiří Matoušek (mathematician)|isbn=978-0-387-95373-1|page=349|publisher=Springer|series=[[Graduate Texts in Mathematics]]|title=Lectures on Discrete Geometry|url=https://books.google.com/books?id=K0fhBwAAQBAJ&pg=PA349|year=2002}}</ref> ItJarak canEuklides bedapat extendeddiperluas toke infinite-dimensionalruang vectorvektor spacesberdimensi astak theterhingga sebagai [[LpNorma spaceL2|norma L<sup>2</sup> norm]] or L<sup>2</sup> distance.<ref>{{citation|title=Linear and Nonlinear Functional Analysis with Applications|first=Philippe G.|last=Ciarlet|publisher=Society for Industrial and Applied Mathematics|year=2013|isbn=978-1-61197-258-0|page=173|url=https://books.google.com/books?id=AUlWAQAAQBAJ&pg=PA173}}</ref> TheJarak EuclideanEuklides distancememberikan givesruang EuclideanEuklides spacesuatu the structure of astruktur [[topologicalruang spacetopologis]], the [[Euclideantopologi topologyEuklides]], with thedengan [[OpenBola ballpejal (matematika)|openbola pejal ballsterbuka]] (subsetssubhimpunan ofdari pointstitik atyang lesslebih thansedikit adaripada givenjarak distanceyang fromberawal adari giventitik point)yang asdiketahui) itssebagai [[NeighbourhoodLingkungan (mathematicsmatematika)|neighborhoodslingkungannya]].<ref>{{citation|title=General Topology: An Introduction|publisher=De Gruyter|first=Tom|last=Richmond|year=2020|isbn=978-3-11-068657-9|page=32|url=https://books.google.com/books?id=jPgdEAAAQBAJ&pg=PA32}}</ref>
 
OtherJarak commonumum distanceslainnya ondalam Euclideanruang spacesEuklides andbeserta low-dimensionalruang vectorvektor spacesberdimensi includerendah melibatkan:<ref>{{citation|last=Klamroth|first=Kathrin|author-link=Kathrin Klamroth|contribution=Section 1.1: Norms and Metrics|doi=10.1007/0-387-22707-5_1|pages=4–6|publisher=Springer|series=Springer Series in Operations Research|title=Single-Facility Location Problems with Barriers|year=2002}}</ref>
 
* [[Jarak Chebyshev]], yang menghitung jarak yang hanya dengan mengasumsi bahwa dimensi yang sangat signifikan adalah penting.
* [[Chebyshev distance]], which measures distance assuming only the most significant dimension is relevant.
* [[Jarak Manhattan]], yang menghitung jarak hanya dengan mengikuti arah pada sumbu.
* [[Manhattan distance]], which measures distance following only axis-aligned directions.
* [[Jarak Minkowski]], suatu perumuman yang menyatukan jarak Euklides, jarak Manhattan, dan jarak Chebyshev.
* [[Minkowski distance]], a generalization that unifies Euclidean distance, Manhattan distance, and Chebyshev distance.
 
For points on surfaces in three dimensions, the Euclidean distance should be distinguished from the [[geodesic]] distance, the length of a shortest curve that belongs to the surface. In particular, for measuring great-circle distances on the earth or other spherical or near-spherical surfaces, distances that have been used include the [[haversine distance]] giving great-circle distances between two points on a sphere from their longitudes and latitudes, and [[Vincenty's formulae]] also known as "Vincent distance" for distance on a spheroid.<ref>{{citation|title=Computing in Geographic Information Systems|first=Narayan|last=Panigrahi|publisher=CRC Press|year=2014|isbn=978-1-4822-2314-9|contribution=12.2.4 Haversine Formula and 12.2.5 Vincenty's Formula|pages=212–214|url=https://books.google.com/books?id=kjj6AwAAQBAJ&pg=PA212}}</ref>
 
== SejarahAsal-muasal ==
EuclideanJarak distanceEuklides isadalah thejarak distancedi indalam [[Euclideanruang spaceEuklides]]; bothyang dinamai conceptsdari areseorang namedmatematikawan afterYunani ancientkuno Greekyang mathematicianbernama [[EuclidEuklides]],. whoseKonsep tersebut dijelaskan dalam bukunya, [[Euclid's Elements|''Elements'']], becameyang amenjadi standardbuku textbookcetak in geometry forstandar manyselama centuriesbertahun.<ref>{{citation|title=Visualization for Information Retrieval|first=Jin|last=Zhang|publisher=Springer|year=2007|isbn=978-3-540-75148-9}}</ref> ConceptsKonsep oftentang [[lengthpanjang]] anddan [[distancejarak]] areyang widespreadtersebar acrossluas cultures,di canseluruh bebudaya, datedkemungkinan toberawal thedari <u>earliest surviving "protoliterate" bureaucratic documents from [[Sumer]] in the fourth millennium BC (far before Euclid)</u>,<ref>{{citation|last=Høyrup|first=Jens|author-link=Jens Høyrup|editor1-last=Jones|editor1-first=Alexander|editor2-last=Taub|editor2-first=Liba|editor2-link=Liba Taub|contribution=Mesopotamian mathematics|contribution-url=https://akira.ruc.dk/~jensh/Publications/2018%7Bj%7D_Mesopotamian%20Mathematics_S.pdf|pages=58–72|publisher=Cambridge University Press|title=The Cambridge History of Science, Volume 1: Ancient Science|year=2018}}</ref> and have been hypothesized to develop in children earlier than the related concepts of speed and time.<ref>{{citation|last1=Acredolo|first1=Curt|last2=Schmid|first2=Jeannine|doi=10.1037/0012-1649.17.4.490|issue=4|journal=[[Developmental Psychology (journal)|Developmental Psychology]]|pages=490–493|title=The understanding of relative speeds, distances, and durations of movement|volume=17|year=1981}}</ref> But the notion of a distance, as a number defined from two points, does not actually appear in Euclid's ''Elements''. Instead, Euclid approaches this concept implicitly, through the [[Congruence (geometry)|congruence]] of line segments, through the comparison of lengths of line segments, and through the concept of [[Proportionality (mathematics)|proportionality]].<ref>{{citation|last=Henderson|first=David W.|author-link=David W. Henderson|journal=[[Bulletin of the American Mathematical Society]]|pages=563–571|title=Review of ''Geometry: Euclid and Beyond'' by Robin Hartshorne|url=https://www.ams.org/journals/bull/2002-39-04/S0273-0979-02-00949-7|volume=39|year=2002|doi=10.1090/S0273-0979-02-00949-7|doi-access=free}}</ref>
 
The [[Pythagorean theorem]] is also ancient, but it could only take its central role in the measurement of distances after the invention of [[Cartesian coordinates]] by [[René Descartes]] in 1637. The distance formula itself was first published in 1731 by [[Alexis Clairaut]].<ref>{{citation|last=Maor|first=Eli|author-link=Eli Maor|isbn=978-0-691-19688-6|pages=133–134|publisher=Princeton University Press|title=The Pythagorean Theorem: A 4,000-Year History|url=https://books.google.com/books?id=XuWZDwAAQBAJ&pg=PA133|year=2019}}</ref> Because of this formula, Euclidean distance is also sometimes called Pythagorean distance.<ref>{{citation|last1=Rankin|first1=William C.|last2=Markley|first2=Robert P.|last3=Evans|first3=Selby H.|date=March 1970|doi=10.3758/bf03210143|issue=2|journal=[[Perception & Psychophysics]]|pages=103–107|title=Pythagorean distance and the judged similarity of schematic stimuli|volume=7|s2cid=144797925|doi-access=free}}</ref> Although accurate measurements of long distances on the earth's surface, which are not Euclidean, had again been studied in many cultures since ancient times (see [[history of geodesy]]), the idea that Euclidean distance might not be the only way of measuring distances between points in mathematical spaces came even later, with the 19th-century formulation of [[non-Euclidean geometry]].<ref>{{citation|last=Milnor|first=John|author-link=John Milnor|doi=10.1090/S0273-0979-1982-14958-8|issue=1|journal=[[Bulletin of the American Mathematical Society]]|mr=634431|pages=9–24|title=Hyperbolic geometry: the first 150 years|volume=6|year=1982|doi-access=free}}</ref> The definition of the Euclidean norm and Euclidean distance for geometries of more than three dimensions also first appeared in the 19th century, in the work of [[Augustin-Louis Cauchy]].<ref>{{citation|title=Foundations of Hyperbolic Manifolds|volume=149|series=[[Graduate Texts in Mathematics]]|first=John G.|last=Ratcliffe|edition=3rd|publisher=Springer|year=2019|isbn=978-3-030-31597-9|page=32|url=https://books.google.com/books?id=yMO4DwAAQBAJ&pg=PA32}}</ref>