Teorema dasar aljabar: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib)
ce + display block indent latex
Dedhert.Jr (bicara | kontrib)
'''Dengan teori Galois''': jangan ditebalkan
Baris 107:
Pada 2007, Joseph Shipman menunjukkan bahwa asumsi polinomial berderajat ganjil selalu memiliki akar merupakan asumsi yang dapat diganti dengan asumsi yang lebih ringan. Ia menunjukkan semua lapangan dengan sifat setiap polinomial berderajat prima memiliki akar haruslah tertutup secara aljabar (sehingga derajat "ganjil" dapat diganti dengan derajat "ganjil prima" dan ini berlaku untuk lapangan dengan sembarang karakteristik)<ref>Shipman, J. [http://www.jon-arny.com/httpdocs/Gauss/Shipman%20Intellig%20Mod%20p%20FTA.pdf Improving the Fundamental Theorem of Algebra] ''The Mathematical Intelligencer'', Volume 29 (2007), Number 4. pp. 9-14</ref>. Sifat ini dapat digunakan sebagai definisi lapangan yang tertutup secara aljabar dapat didefinisikan, karena asumsi ini sudah tidak dapat diperingan lagi, mengingat terdapat contoh penyangkal apabila ada bilangan prima ganjil yang tidak dimasukkan ke asumsi. Akan tetapi, contoh-contoh penyangkal yang diberikan hanyalah berupa polinomial yang memiliki koefisien dari lapangan yang tidak memiliki akar kuadrat dari <math>-1</math>. Pada lapangan yang memiliki akar kuadrat dari <math>-1</math>, jika setiap polinomial berderajat <math>n \in I</math> memiliki akar (<math>I</math> adalah suatu himpunan tak hingga yang tidak memiliki anggota bilangan genap), maka setiap polinomial <math>f(x)</math> berderajat ganjil memiliki akar (karena <math>(x^2+1)^kf(x)</math> memiliki akar, dengan <math>k</math> dipilih sedemikian sehingga <math>\deg(f)+2k\in I</math>. Mohsen Aliabadi memperluas{{Dubious|date=July 2019}} hasil dari Shipman pada 2013, membuktikan secara independen bahwa syarat cukup untuk sembarang lapangan (dengan sembarang karakteristik) agar menjadi tertutup secara aljabar adalah dengan menunjukkan lapangan tersebut memiliki akar untuk polinomial berderajat prima.<ref>M. Aliabadi, M. R. Darafsheh, [[arxiv:1508.00937|On maximal and minimal linear matching property]], ''Algebra and discrete mathematics'', Volume 15 (2013). Number 2. pp. 174–178</ref>
 
==== '''Dengan teori Galois''' ====
Metode lain untuk membuktikan teorema dasar ini adalah dengan menggunakan teori Galois, cukup dengan menunjukkan bahwa <math>\mathbb{C}</math> tidak memiliki perluasan lapangan sejati. Misalkan <math>K/\mathbb{C}</math> adalah perluasan berhingga. Karena penutup normal dari <math>K</math> atas lapangan <math>\mathbb{R}</math> berderajat hingga atas lapangan <math>\mathbb{C}</math> (atau <math>\mathbb{R}</math>), tanpa mengurangi keumuman, asumsikan <math>K</math> adalah perluasan normal dari <math>\mathbb{R}</math> (sehingga merupakan perluasan Galois, mengingat setiap perluasan aljabar dari lapangan dengan karakteristik 0 bersifat terpisahkan). Misalkan <math>G</math> adalah grup Galois dari perluasan <math>K/\mathbb{R}</math>, dan <math>H</math> adalah subgrup-2 Sylow dari <math>G</math>, sehingga orde dari <math>H</math> adalah perpangkatan dari bilangan 2 dan indeks subgrup <math>H</math> di <math>G</math> bernilai ganjil. Dari teorema dasar teori Galois, terdapat subperluasan <math>L</math> dari <math>K/\mathbb{R}</math> sedemikian sehingga <math>\mathrm{Gal}(K/L)=H</math>. Karena <math>[L:\mathbb{R}]=[G:H]</math> bernilai ganjil dan tidak ada polinomial real nonlinear berderajat ganjil yang tidak dapat direduksi, maka <math>L=\mathbb{R}</math> , sehingga <math>[K:\mathbb{R}]</math> dan <math>[K:\mathbb{C}]</math> adalah perpangkatan dari bilangan 2. Dengan metode kontradiksi, asumsikan bahwa <math>[K:\mathbb{C}]>1</math>, sehingga orde dari grup <math>\mathrm{Gal}(K/C)</math> adalah perpangkatan dari bilangan 2, maka terdapat subperluasan <math>M</math> dari <math>K/\mathbb{C}</math> yang memiliki derajat 2. Akan tetapi, lapangan <math>\mathbb{C}</math> tidak memiliki perluasan berderajat 2, sebab setiap polinomial kompleks kuadrat memiliki akar kompleks, sebagaimana yang telah disebutkan di atas. Ini menunjukkan bahwa <math>[K:\mathbb{C}]=1</math>, sehingga <math>K=C</math>. Dengan demikian, bukti ini selesai.<!-- [Bagian ini belum Diterjemahkan]
If ''k''&nbsp;=&nbsp;0, then ''n'' is odd, and therefore ''p''(''z'') has a real root. Now, suppose that ''n''&nbsp;=&nbsp;2''<sup>k</sup>m'' (with ''m'' odd and ''k''&nbsp;>&nbsp;0) and that the theorem is already proved when the degree of the polynomial has the form 2<sup>''k''&nbsp;−&nbsp;1</sup>''m''′ with ''m''′ odd. For a real number ''t'', define: