Virus

Agen infeksi submikroskopik yang tidak memiliki sel dan hanya dapat bereplikasi dalam sel makhluk hidup.
Revisi sejak 8 April 2020 13.49 oleh RianHS (bicara | kontrib) (Klasifikasi: Klasifikasi ICTV)

Virus adalah mikroorganisme patogen yang menginfeksi sel makhluk hidup. Virus hanya dapat bereplikasi di dalam sel makhluk hidup karena virus tidak memiliki perlengkapan seluler untuk bereproduksi sendiri. Semua bentuk kehidupan dapat diinfeksi oleh virus, mulai dari hewan, tumbuhan, hingga bakteri dan arkea.[1] Istilah virus biasanya digunakan pada jenis virus yang menginfeksi sel-sel eukariota, sementara virus yang menginfeksi sel prokariota—seperti bakteri dan arkea—dikenal sebagai bakteriofag.

Virus
Virus Edit nilai pada Wikidata
Rekaman
Edit nilai pada Wikidata
Penyakitpenyakit menular virus dan pneumonia virus Edit nilai pada Wikidata
Taksonomi
DomainVirus Edit nilai pada Wikidata
Grup

Ketika tidak berada di dalam sel atau tidak dalam proses menginfeksi sel, virus berada dalam bentuk partikel independen yang disebut virion. Virion terdiri atas materi genetik berupa asam nukleat (DNA atau RNA, tetapi tidak kombinasi keduanya) yang diselubungi lapisan protein yang disebut kapsid. Pada beberapa virus terdapat amplop eksternal yang terbuat dari lipid.

Terdapat perbedaan pendapat mengenai status virus sebagai makhluk hidup atau sebagai struktur organik yang berinteraksi dengan makhluk hidup.[2] Karena karakteristik khasnya ini, virus selalu terasosiasi dengan penyakit tertentu, baik pada manusia (misalnya virus influenza dan HIV), hewan (misalnya virus flu burung), atau tumbuhan (misalnya virus mosaik tembakau). Ilmu yang mempelajari virus disebut virologi.

Etimologi

Kata virus berasal dari bahasa Latin vīrus yang berarti racun dan cairan berbahaya lainnya. Rumpun bahasa Indo-Eropa lain seperti bahasa Sanskerta viṣa, bahasa Avesta vīša, dan bahasa Yunani Kuno ἰός semuanya berarti racun.[3] Kata sifat virulen yang artinya beracun muncul sekitar tahun 1400.[4] Makna virus sebagai "agen yang menyebabkan penyakit infeksi" pertama kali digunakan pada tahun 1728,[3] jauh sebelum ditemukannya virus itu sendiri oleh Dmitri Ivanovsky pada tahun 1892. Sementara itu, kata sifat viral yang berarti "dari sifat virus atau disebabkan oleh virus" baru muncul pada tahun 1944.[5]

Sejarah penemuan

 
Virus mosaik tembakau merupakan virus yang pertama kali divisualisasikan dengan mikroskop elektron.
  • Virus telah menginfeksi sejak zaman sebelum Masehi, hal tersebut terbukti dengan adanya beberapa penemuan-penemuan yaitu laporan mengenai infeksi virus dalam hieroglif di Memphis, ibu kota Mesir kuno (1400 SM) yang menunjukkan adanya penyakit poliomyelitis. Selain itu, Raja Firaun Ramses V meninggal pada 1196 SM dan dipercaya meninggal karena terserang virus smallpox.
  • Pada zaman sebelum Masehi, virus endemik yang cukup terkenal adalah virus smallpox yang menyerang masyarakat Tiongkok pada tahun 1000. Akan tetapi pada pada tahun 1798, Edward Jenner menemukan bahwa beberapa pemerah susu memiliki kekebalan terhadap virus pox. Hal tersebut diduga karena virus pox yang terdapat pada sapi, melindungi manusia dari pox. Penemuan tersebut yang dipahami kemudian merupakan pelopor penggunaan vaksin.
  • Pada tahun 1880, Louis Pasteur dan Robert Koch mengemukakan suatu "germ theory" yaitu bahwa mikroorganisme merupakan penyebab penyakit. Pada saat itu juga terkenal Postulat Koch yang sangat terkenal hingga saat ini, yaitu:
    1. Agen penyakit harus ada di dalam setiap kasus penyakit
    2. Agen harus bisa diisolasi dari inang dan bisa ditumbuhkan secara in vitro
    3. Ketika kultur agen muri diinokulasikan ke dalam sel inang sehat yang rentan maka dapat menimbulkan penyakit
    4. Agen yang sama dapat diambil dan diisolasi kembali dari inang yang terinfeksi tersebut
  • Penelitian mengenai virus dimulai dengan penelitian mengenai penyakit mosaik yang menghambat pertumbuhan tanaman tembakau dan membuat daun tanaman tersebut memiliki bercak-bercak. Pada tahun 1883, Adolf Mayer, seorang ilmuwan Jerman, menemukan bahwa penyakit tersebut dapat menular ketika tanaman yang ia teliti menjadi sakit setelah disemprot dengan getah tanaman yang sakit. Karena tidak berhasil menemukan mikroba pada getah tanaman tersebut, Mayer menyimpulkan bahwa penyakit tersebut disebabkan oleh bakteri yang lebih kecil dari biasanya dan tidak dapat dilihat dengan mikroskop.
  • Pada tahun 1892, Dmitri Ivanovsky dari Rusia menemukan bahwa getah daun tembakau yang sudah disaring dengan penyaring bakteri masih dapat menimbulkan penyakit mosaik. Ivanowsky lalu menyimpulkan dua kemungkinan, yaitu bahwa bakteri penyebab penyakit tersebut berbentuk sangat kecil sehingga masih dapat melewati saringan, atau bakteri tersebut mengeluarkan toksin yang dapat menembus saringan.[6] Kemungkinan kedua ini dibantah pada tahun 1897 setelah Martinus Beijerinck dari Belanda menemukan bahwa agen infeksi di dalam getah yang sudah disaring tersebut dapat bereproduksi karena kemampuannya menimbulkan penyakit tidak berkurang setelah beberapa kali ditransfer antartanaman.[6] Patogen mosaik tembakau disimpulkan sebagai bukan bakteri, melainkan merupakan contagium vivum fluidum, yaitu sejenis cairan hidup pembawa penyakit.[6]
  • Setelah itu, pada tahun 1898, Loeffler dan Frosch melaporkan bahwa penyebab penyakit mulut dan kaki sapi dapat melewati saringan yang tidak dapat dilewati bakteri. Namun, mereka menyimpulkan bahwa patogennya adalah bakteri yang sangat kecil.[6]
  • Pendapat Beijerinck baru terbukti pada tahun 1935, setelah Wendell Meredith Stanley dari Amerika Serikat berhasil mengkristalkan partikel penyebab penyakit mosaik yang kini dikenal sebagai virus mosaik tembakau.[7] Virus ini juga merupakan virus yang pertama kali divisualisasikan dengan mikroskop elektron pada tahun 1939 oleh ilmuwan Jerman G.A. Kausche, E. Pfankuch, dan H. Ruska.[8]
  • Pada tahun 1911, Peyton Rous menemukan jika ayam yang sehat diinduksi dengan sel tumor dari ayam yang sakit, maka pada ayam yang sehat tersebut juga akan terkena kanker.[9] Selain itu, Rous juga mencoba melisis sel tumor dari ayam yang sakit lalu menyaring sari-sarinya dengan pori-pori yang tidak dapat dilalui oleh bakteri, lalu sari-sari tersebut di suntikkan dalam sel ayam yang sehat dan ternyata hal tersebut juga dapat menyebabkan kanker.[9] Rous menyimpulkan kanker disebabkan karena sel virus pada sel tumor ayam yang sakit yang menginfeksi sel ayam yang sehat.[9] Penemuan tersebut merupakan penemuan pertama virus onkogenik, yaitu virus yang dapat menyebabkan tumor. Virus yang ditemukan oleh Rous dinamakan Rous Sarcoma Virus (RSV).[9]
  • Pada tahun 1933, Shope papilloma virus atau cottontail rabbit papilloma virus (CRPV) yang ditemukan oleh Dr. Richard E Shope merupakan model kanker pertama pada manusia yang disebabkan oleh virus.[10] Dr. Shope melakukan percobaan dengan mengambil filtrat dari tumor pada hewan lalu disuntikkan pada kelinci domestik yang sehat, dan ternyata timbul tumor pada kelinci tersebut.[10]
  • Wendell Stanley merupakan orang pertama yang berhasil mengkristalkan virus pada tahun 1935.[11] Virus yang dikristalkan merupakan Tobacco Mozaic Virus (TMV).[11] Stanley mengemukakan bahwa virus akan dapat tetap aktif meskipun setelah kristalisasi.[11]
  • Martha Chase dan Alfred Hershey pada tahun 1952 berhasil menemukan bakteriofag.[12] Bakteriofag merupakan virus yang memiliki inang bakteri sehingga hanya dapat bereplikasi di dalam sel bakteri.[12]

Asal-usul

Virus selalu berdampingan dengan organisme, dan mungkin telah ada sejak sel hidup pertama kali berevolusi. Virus tidak meninggalkan fosil, sehingga asal muasal virus hanya bisa dihipotesiskan dengan cara-cara seperti teknik-teknik biologi molekuler. Teknik-teknik ini mengandalkan keberadaan DNA atau RNA virus yang terdahulu. Akan tetapi, sebagian besar virus yang diawetkan dan disimpan di laboratorium berusia kurang dari 90 tahun.[13][14] Metode-metode biologi molekuler hanya berhasil melacak nenek moyang virus yang berevolusi pada abad ke-20.[15] Golongan virus baru berkali-kali muncul dalam berbagai tahap evolusi makhluk hidup.[16] Ada tiga teori utama tentang asal-usul virus: teori regresi, teori keluar dari sel, dan teori koevolusi[16][17]

Teori regresi
Menurut teori ini, virus bisa jadi dulunya adalah sel-sel kecil yang menjadi parasit dalam sel yang lebih besar. Kemudian, parasit-parasit ini kehilangan gen-gen yang tidak lagi dibutuhkan setelah hidup sebagai parasit. Dengan demikian, sel-sel tersebut mengalami regresi menjadi virus. Teori ini didukung oleh keberadaan bakteri seperti Rickettsia dan Chlamydia yang hanya mampu bereproduksi di dalam sel inang (seperti halnya virus). Menurut teori ini, jika sel-sel seperti ini bisa mengandalkan hidup sebagai parasit, gen-gen lain yang hanya diperlukan untuk hidup mandiri dapat hilang.
Teori keluar dari sel
Menurut teori ini, virus berevolusi dari potongan DNA atau RNA yang keluar dari gen organisme yang lebih besar. DNA yang keluar ini dapat berasal dari plasmid (potongan-potongan DNA yang dapat berpindah dari satu sel ke sel lain) dan juga dari bakteri.[18]
Teori koevolusi
Menurut teori ini, virus tidak berasal dari sel dan berevolusi dari molekul-molekul kompleks protein dan DNA pada saat yang sama dengan munculnya sel di bumi, dan selama bertahun-tahun selalu bergantung kepada sel hidup.[19]

Ketiga teori ini memiliki kelemahan. Teori regresi tidak dapat menjelaskan mengapa sel-sel parasit terkecil yang ditemukan pun tidak memiliki kemiripan sama sekali dengan virus. Teori keluar dari sel tidak dapat menjelaskan struktur-strukur yang hanya ada pada virus dan tidak pada sel. Teori koevolusi tidak dapat menjelaskan bagaimana virus yang terbentuk pertama kali dapat bertahan dan memperbanyak diri tanpa keberadaan sel.[19][20]

Mikrobiologi

Status kehidupan

Ada perbedaan pendapat ilmiah tentang apakah virus digolongkan sebagai makhluk hidup atau sekadar struktur organik yang berinteraksi dengan makhluk hidup. Walaupun demikian, mereka lebih sering dianggap sebagai replikator (zat yang melakukan replikasi DNA) dan tidak termasuk bentuk kehidupan.[21] Virus digambarkan sebagai "organisme di ujung kehidupan",[22] karena mereka serupa dengan makhluk hidup dalam hal kepemilikan gen, berevolusi melalui seleksi alam,[23] dan bereproduksi dengan membuat banyak salinan dari diri mereka sendiri melalui perakitan diri. Meskipun virus memiliki gen, mereka tidak memiliki sel, yang sering dipandang sebagai unit dasar kehidupan. Virus tidak memiliki metabolisme sendiri dan membutuhkan sel inang untuk membuat produk baru. Oleh karena itu, mereka tidak dapat bereproduksi secara alami di luar sel inang.[24] Walaupun sejumlah bakteri seperti Rickettsia dan Chlamydia memiliki keterbatasan yang sama, mereka dianggap sebagai organisme hidup karena memiliki sel sendiri.[25][26] Perakitan diri virus di dalam sel inang berimplikasi pada studi asal mula kehidupan karena mendukung hipotesis bahwa kehidupan dapat dimulai dari molekul organik yang dapat merakit diri.[27]

Struktur

 
Model skematik virus berkapsid heliks (virus mosaik tembakau): 1. asam nukleat (RNA), 2. kapsomer, 3. kapsid.

Virus adalah organisme subseluler yang karena ukurannya sangat kecil, hanya dapat dilihat dengan menggunakan mikroskop elektron. Ukurannya lebih kecil daripada bakteri sehingga virus tidak dapat disaring dengan penyaring bakteri. Virus terkecil berdiameter hanya 20 nm (lebih kecil daripada ribosom), sedangkan virus terbesar sekalipun sukar dilihat dengan mikroskop cahaya.[28]

Genom virus dapat berupa DNA ataupun RNA.[29] Genom virus dapat terdiri dari DNA untai ganda, DNA untai tunggal, RNA untai ganda, atau RNA untai tunggal.[29] Selain itu, asam nukleat genom virus dapat berbentuk linear tunggal atau sirkuler.[29] Jumlah gen virus bervariasi dari empat untuk yang terkecil sampai dengan beberapa ratus untuk yang terbesar.[28][29] Bahan genetik kebanyakan virus hewan dan manusia berupa DNA, dan pada virus tumbuhan kebanyakan adalah RNA yang beruntai tunggal.[29]

Bahan genetik virus diselubungi oleh suatu lapisan pelindung.[29] Protein yang menjadi lapisan pelindung tersebut disebut kapsid.[29] Bergantung pada tipe virusnya, kapsid bisa berbentuk bulat (sferik), heliks, polihedral, atau bentuk yang lebih kompleks dan terdiri atas protein yang disandikan oleh genom virus.[29] Kapsid terbentuk dari banyak subunit protein yang disebut kapsomer.[28][29]

 
Bakteriofag terdiri dari kepala polihedral berisi asam nukleat dan ekor untuk menginfeksi inang.

Untuk virus berbentuk heliks, protein kapsid (biasanya disebut protein nukleokapsid) terikat langsung dengan genom virus.[30] Misalnya, pada virus campak, setiap protein nukleokapsid terhubung dengan enam basa RNA membentuk heliks sepanjang sekitar 1,3 mikrometer.[30] Komposisi kompleks protein dan asam nukleat ini disebut nukleokapsid.[30] Pada virus campak, nukleokapsid ini diselubungi oleh lapisan lipid yang didapatkan dari sel inang, dan glikoprotein yang disandikan oleh virus melekat pada selubung lipid tersebut.[30] Bagian-bagian ini berfungsi dalam pengikatan pada dan pemasukan ke sel inang pada awal infeksi.[30]

 
Virus cacar air memiliki selubung virus.

Kapsid virus sferik menyelubungi genom virus secara keseluruhan dan tidak terlalu berikatan dengan asam nukleat seperti virus heliks.[31] Struktur ini bisa bervariasi dari ukuran 20 nanometer hingga 400 nanometer dan terdiri atas protein virus yang tersusun dalam bentuk simetri ikosahedral.[31] Jumlah protein yang dibutuhkan untuk membentuk kapsid virus sferik ditentukan dengan koefisien T, yaitu sekitar 60t protein.[31] Sebagai contoh, virus hepatitis B memiliki angka T=4, butuh 240 protein untuk membentuk kapsid.[31] Seperti virus bentuk heliks, kapsid sebagian jenis virus sferik dapat diselubungi lapisan lipid, namun biasanya protein kapsid sendiri langsung terlibat dalam penginfeksian sel.[31]

Beberapa jenis virus memiliki unsur tambahan yang membantunya menginfeksi inang.Virus pada hewan memiliki selubung virus, yaitu membran menyelubungi kapsid.[32] Selubung ini mengandung fosfolipid dan protein dari sel inang, tetapi juga mengandung protein dan glikoprotein yang berasal dari virus.[32] Selain protein selubung dan protein kapsid, virus juga membawa beberapa molekul enzim di dalam kapsidnya. Ada pula beberapa jenis bakteriofag yang memiliki ekor protein yang melekat pada "kepala" kapsid. Serabut-serabut ekor tersebut digunakan oleh fag untuk menempel pada suatu bakteri.[33] Partikel lengkap virus disebut virion. Virion berfungsi sebagai alat transportasi gen, sedangkan komponen selubung dan kapsid bertanggung jawab dalam mekanisme penginfeksian sel inang.[33]

Virus raksasa

Ilmuwan menemukan virus raksasa yang dikenal dengan istilah Mimivirus, Megavirus, dan Pandoravirus.

Pandoravirus merupakan jenis virus berukuran sangat besar dengan genom yang jauh lebih besar dibanding virus-virus lain yang sudah lebih dulu dikenal. Pandoravirus disebut sebagai virus super raksasa, karena ukurannya mengalahkan virus berukuran raksasa lain seperti Mimivirus atau Megavirus.

Meski berukuran raksasa, namun tetap tidak bisa dilihat dengan mata telanjang. Virus ini ditemukan peneliti dari Prancis Jean Michael Claverie dari Universitas Mediterranée.[34]

Pandoravirus berukuran seribu kali lebih besar dibanding virus influenza yang berukuran 100 nanometer. Pandoravirus memiliki 2.556 gen (200 kali lebih banyak dari virus influenza). Ukuran Pandoravirus lebih besar dua kali lipat dari Megavirus yang hanya memiliki 1.120 gen.

Replikasi

Replikasi virus terdiri atas beberapa tahapan-tahapan yaitu pelekatan virus, penetrasi, pelepasan mantel, replikasi genom dan ekspresi gen, perakitan, pematangan, dan pelepasan.

Pelekatan virus

Pelekatan virus (adsorpsi) merupakan proses interaksi awal antara partikel virus dengan molekul reseptor pada permukaan sel inang.[35] Pada tahap ini, terjadi ikatan spesifik antara molekul reseptor seluler dengan antireseptor pada virus.[35] Beberapa jenis virus memerlukan molekul lainnya untuk proses pelekatan yaitu koreseptor.[35]

Molekul reseptor yang target pada permukaan sel dapat berbentuk protein (biasanya glikoprotein) atau residu karbohidrat yang terdapat pada glikoprotein atau glikolipid.[35]

Beberapa virus kompleks seperti poxvirus dan herpesvirus memiliki lebih dari satu reseptor sehingga mempunyai beberapa rute untuk berikatan dengan sel.[35]

Reseptor virus mempunyai beberapa kelas yang berbeda:

  • molekul immunoglobulin-like superfamily
  • reseptor terkait membran
  • saluran dan transporter transmembran[35]

Beberapa contoh virus beserta reseptor yang dimiliki:

  • Human rhinovirus (HRV)
Human rhinovirus memiliki reseptor ICAM-1(Intracelluler adhesion molecule-1).[36] Molekul tersebut merupakan molekul adhesi yang fungsi normalnya adalah untuk mengikatkan sel kepada substratnya.[36] struktur ICAM-1 mirip dengan molekul imunoglobulin dengan domain C dan V sehingga digolongkan sebagai protein supefamily immunoglobulin[36]
Struktur ICAM-1 memiliki lima Ig-like domain untuk berikatan dengan Lfa-1 (Leukocite function antigen-1), Mac-1 (Macrofage antigen-1), Rhinovirus (HRV), fibrinogen, dan PFIE (malaria infected erythocytes).[36]
Sepuluh serotipe dari HRV menggunakan ICAM-1 sebagai reseptor, sepuluh serotipe lainnya menggunakan protein yang beruhubungan dengan LDL reseptor.[36]
  • Poliovirus
Poliovirus mempunyai reseptor virus berupa protein membran integral yang juga anggota dari molekul superfamily immunoglobulin.[37] Reseptor ini memiliki tiga domain yaitu satu berupa variabel dan dua konstan.[37]
  • Virus influenza
Virus ini mempunyai dua tipe spike glikoprotein pada permukaan partikel virus yaitu hemagglutinin (HA) dan neuraminidase.[38] HA akan berikatan dengan reseptor virus influenza yang berupa asam sialat (N-asetil neuraminic acid).[38] Virus ini berikatan dengan muatan negatif dari moieties asam sialat yang ada pada rantai oligosakarida yang secara kovalen berikatan dengan glikoprotein pada permukaan sel.[38] Adanya asam sialat pada hampir semua jenis sel menyebabkan virus influenza bisa berikatan dengan banyak tipe sel.[38]

Penetrasi

Penetrasi terjadi pada waktu yang sangat singkat setelah pelekatan virus pada reseptor di membran sel.[39] Proses ini memerlukan energi Tiga mekanisme yang terlibat:

  • Translokasi partikel virus
Proses translokasi relatif jarang terjadi di antara virus dan mekanisme belum sepenuhnya dipahami benar, kemungkinan diperantarai oleh protein di dalam virus kapsid dan reseptor membran spesifik.[40]
  • Endositosis virus ke dalam vakuola intraseluler
Proses endositosis merupakan mekanisme yang sangat umum sebagai jalan masuk virus ke dalam sel.[41] Tidak diperlukan protein virus spesifik selain yang telah digunakan untuk pengikatan reseptor.[41]
  • fusi dari sampul dengan membran sel (untuk virus yang bersampul)
Proses fusi virus bersampul dengan membran sel baik secara langsung maupun dengan permukaan sel maupun mengikuti endositosis dalam sitoplasma.[41] Diperlukan adanya protein fusi spesifik dalam sampul virus, misalnya: HA influenza dan glikoprotein transmembran (TM) Rhinovirus.[41]

Pelepasan mantel

Tahap ini terjadi setelah proses penetrasi di mana kapsid virus baik seluruhnya maupun sebagian dipindahkan ke dalam sitoplasma sel inang.[39] Pada tahap ini genom virus terekspos dalam bentuk kompleks nukleoprotein.[39] Dalam beberapa kasus, tahap ini berlangsung cukup sederhana dan terjadi selama fusi pada membran virus dengan membran plasma.[39] untuk virus lainnya, tahap ini merupakan proses multistep yang melibatkan jalur endositosis dan membran nukleus.[39]

Replikasi genom dan ekspresi gen

 
7 Klasifikasi Baltimore.[42]

Strategi replikasi dari beberapa virus tergantung pada material genetik alami dari virus tersebut.[43] Dalam hal ini, virus dibagi dalam 7 kelompok seperti pengelompokan David Baltimore.[43] Proses ekspresi gen akan menentukan semua proses infeksi virus (akut, kronis, persisten, atau laten).[43]

  • Kelas I: DNA utas ganda
Kelompok ini dibagi menjadi dua kelompok.
  1. Replikasi terjadi di inti dan relatif tergantung kepada faktor-faktor seluler (Adenoviridae, Polyomaviridae, Herpesviridae)[43]
  2. Replikasi terjadi di sitoplasma (Poxviridae). virus ini melibatkan semua faktor-faktor yang penting untuk transkripsi dan replikasi dari genomnya, dan kebanyakan tidak tergantung pada perangkat replikasi dari inangnya[43].
  • Kelas II: DNA utas tunggal
Replikasi terjadi di dalam nukleus, melibatkan bentuk utas ganda intermediate sebagai cetakan untuk sintesis utas tunggal DNA turunannya (Parvoviridae)[43]
  • Kelas III: RNA utas ganda
Virusnya memiliki genom yang tersegmentasi. masing-masing segmennya ditranskripsi secara terpisah untuk menghasilkan monosistronik mRNA individual. contoh: Reoviridae[43]
  • Kelas IV: RNA utas tunggal (+)
Virus dengan polisistronik mRNA di mana kelas ini genom RNA membentuk mRNA yang ditranslasikan untuk membentuk suatu polyprotein yang dipecah membentuk protein matang. Contoh: Picornaviridae[43]
  • Kelas V: RNA utas tunggal (-)
Genom pada kelas ini dibagi menjadi dua tipe:
  1. Genom tidak bersegmen (Rhabdoviridae), Tahap pertama dalam replikasi adalah transkripsi dari genom RNA utas (-) oleh virion RNA-dependent RNA polimerase untuk menghasilkan monosistronik mRNA yang juga sebagai cetakan untuk replikasi genom.[43]
  2. Genom bersegmen (Orthomyxoviridae), replikasi terjadi di dalam nukleus di mana monosistronik mRNA untuk masing-masing gen virus dihasilkan oleh transkriptase virus.[43]
  • Kelas VI: RNA utas tunggal (+) dengan DNA Intermediat
Genom Retrovirus RNA utas tunggal (+) bersifat diploid dan tidak dipakai secara langsung sebagai mRNA tetapi sebagi template untuk reverse transkriptase menjadi DNA.[43]
  • Kelas VII: DNA utas ganda dengan RNA Intermediat
Virus kelompok ini bergantung kepada reverse transkriptase, tetapi berbeda dengan retrovirus, prosesnya terjadi di dalam partikel virus selama maturasi (Hepadnaviridae).[43]

Perakitan

Perakitan merupakan proses pengumpulan komponen-komponen virion pada bagian khusus di dalam sel.[39] Selama proses ini, terjadi pembentukan struktur partikel virus.[39] Proses ini tergantung kepada proses replikasi di dalam sel dan tempat di mana virus melepaskan diri dari sel.[39] mekanisme perakitan bervariasi untuk virus yang berbeda-beda. Contoh: proses perakitan Picornavirus, Poxvirus, dan Reovirus terjadi di sitoplasma, sementara itu proses perakitan Adenovirus, Poliovirus, dan Parvovirus terjadi di nukleus.[39]

Pematangan

Pematangan merupakan tahap dari siklus hidup virus dan bersifat infeksius.[39] Pada tahap ini terjadi perubahan struktur dalam partikel virus yang kemungkinan dihasilkan oleh pemecahan spesifik protein kapsid untuk menghasilkan produk yang matang.[39] protease virus dan enzim seluler lainnya biasanya terlibat dalam proses ini.[39]

Pelepasan

Semua virus kecuali virus tanaman melepaskan diri dari sel inang melalui dua mekanisme:

  • untuk virus litik (semua virus non-selubung), pelepasan merupakan proses yang sederhana, di mana sel yang terinfeksi terbuka dan virus keluar.[39]
  • untuk virus berselubung, diperlukan membran lipid ketika virus keluar dari sel melewati membran, proses ini dikenal sebagai budding.[39]

Proses pelepasan partikel virus kemungkinan bisa merusak sel(Paramyxovirus, Rhabdovirus, dan Togavirus), dan kemungkinan sebagian lagi tidak merusak sel (Retrovirus).[39]

Klasifikasi

Klasifikasi bertujuan untuk menggambarkan keanekaragaman virus dengan memberi nama dan mengelompokkan virus berdasarkan kesamaan mereka. Pada tahun 1962, André Lwoff, Robert Horne, dan Paul Tournier merupakan orang-orang pertama yang mengembangkan pengelompokan virus berdasarkan sistem hierarki Linnaeus.[44] Sistem ini menggunakan klasifikasi filum, kelas, bangsa, keluarga, marga, dan spesies. Virus dikelompokkan sesuai dengan kesamaan sifat mereka (bukan kesamaan inang mereka) dan jenis asam nukleat yang membentuk genom mereka.[45] Pada tahun 1966, Komite Internasional Taksonomi Virus (ICTV) dibentuk. Sistem yang diusulkan oleh Lwoff, Horne, dan Tournier tidak pernah sepenuhnya diterima oleh ICTV karena ukuran genom virus yang kecil dan tingkat mutasi mereka yang tinggi membuat sulit untuk menentukan takson virus di atas ordo (bangsa). Oleh sebab itu, klasifikasi Baltimore digunakan untuk melengkapi hierarki yang lebih tradisional.[46]

Klasifikasi ICTV

Komite Internasional Taksonomi Virus (ICTV) mengembangkan sistem klasifikasi yang digunakan saat ini dan menulis pedoman yang memberi bobot lebih besar pada sifat-sifat virus tertentu untuk menjaga keseragaman keluarga virus. Taksonomi terpadu (sistem universal untuk mengklasifikasikan virus) telah ditetapkan. Peneliti baru mendeskripsikan sebagian kecil dari total keragaman virus yang ada di bumi. [47]

Seperti taksonomi makhluk hidup pada umumnya, klasifikasi virus juga dilakukan secara hierarkis atau bertingkat. Sistem klasifikasi virus yang diusulkan oleh ICTV pada tahun 2018 yaitu:[48]

Realm (-viria)
Subrealm (-vira)
Kerajaan (-viriae)
Subkingdom (-virites)
Filum (-viricota)
Subfilum (-viricotina)
Kelas (-viricetes)
Subkelas (-viricetidae)
Ordo (-virales)
Subordo (-virineae)
Keluarga (-viridae)
Subkeluarga (-virinae)
Genus (-virus)
Subgenus (-virus)
Spesies

Dalam klasifikasi virus, terdapat banyak takson yang dikategorikan sebagai incertae sedis atau penempatannya tidak pasti. Pada tahun 2018, virus dikelompokkan dalam 1 realm, 1 filum, 2 subfilum, 6 kelas, 14 ordo, 150 keluarga, 79 subkeluarga, 1.019 genus, 59 subgenus, dan 5.560 spesies.[49]

Virus dapat diklasifikasi menurut morfologi, tropisme dan cara penyebaran, dan genomik fungsional.[50]

  • Klasifikasi virus berdasarkan morfologi
Berdasarkan morfologi, virus dibagi berdasarkan jenis asam nukleat dan juga protein membran terluarnya (sampul) menjadi 4 kelompok, yaitu:[50]
  1. Virus DNA
  2. Virus RNA
  3. Virus berselubung
  4. Virus tidak berselubung
Virus hanya mengandung satu jenis asam nukleat: DNA atau RNA.
  • Klasifikasi virus berdasarkan tropisme dan cara penyebaran
Berdasarkan tropisme dan cara penyebaran, virus dibagi menjadi:[50]
  1. Virus Enterik
  2. Virus Respirasi
  3. Arbovirus
  4. Virus onkogenik
  5. Hepatitis virus
  • Klasifikasi virus berdasarkan genomik fungsional
Virus diklasifikan menjadi 7 kelompok berdasarkan alur fungsi genomnya. Klasifikasi ini disebut juga klasifikasi Baltimore yaitu:[50]
  1. Virus tipe I: DNA utas ganda
  2. Virus tipe II = DNA utas tunggal
  3. Virus tipe III = RNA utas ganda
  4. Virus tipe IV = RNA utas tunggal (+)
  5. Virus tipe V = RNA utas tunggal (-)
  6. Virus tipe VI = RNA utas tunggal (+) dengan DNA perantara (intermediat)
  7. Virus tipe VII = DNA utas ganda dengan RNA perantara

Virus RNA

Virus RNA merupakan virus yang memiliki materi genetik berupa RNA, kelompok yang tergolong dalam kelompok ini adalah virus kelas III hingga VI. Beberapa contoh familia virus yang termasuk ke dalam kelompok ini adalah Retroviridae, Picornaviridae, Orthomixoviridae, dan Arbovirus.[51]

Virus DNA

Virus DNA merupakan virus yang memiliki materi genetik berupa DNA, kelompok yang tergolong dalam kelompok ini adalah virus kelas I, II, VII. Beberapa contoh familia virus yang termasuk ke dalam kelompok ini adalah Herpesviridae, Parvoviridae, dan Poxviridae.[52]

Virus dan penyakit

Virus dapat menginfeksi inangnya dan menyebabkan berbagai akibat bagi inangnya.[53] ada yang berbahaya, namun juga ada yang dapat ditangani oleh sel imun dalam tubuh sehingga akibat yang dihasilkan tidak terlalu besar.[53]

  1. Infeksi akut merupakan infeksi yang berlangsung dalam jangka waktu cepat namun dapat juga berakibat fatal.[53] Akibat dari infeksi akut adalah:
  2. Infeksi kronis merupakan infeksi virus yang berkepanjangan sehingga ada risiko gejala penyakit muncul kembali.[53] Contoh dari infeksi kronis adalah:

Dampak

Beberapa virus ada yang dapat dimanfaatkan dalam rekombinasi genetika.[53] Melalui terapi gen, gen jahat (penyebab infeksi) yang terdapat dalam virus diubah menjadi gen baik (penyembuh).[53] Baru-baru ini David Sanders, seorang profesor ­biologi pada Purdue's School of Science telah menemukan cara pemanfaatan virus dalam dunia kesehatan.[53] Dalam temuannva yang dipublikasikan dalam Jurnal Virology, Edisi 15 Desember ­2002, David Sanders berhasil menjinakkan cangkang luar virus Ebola sehingga dapat dimanfaatkan sebagai pembawa gen kepada sel yang sakit (paru-paru).[53] Meskipun demikian, kebanyakan virus bersifat merugikan terhadap kehidupan manusia, hewan, dan tumbuhan.[53]

Virus sangat dikenal sebagai penyebab penyakit infeksi pada manusia, hewan, dan tumbuhan.[53] Sejauh ini tidak ada makhluk hidup yang tahan terhadap virus.[53] Tiap virus secara khusus menyerang sel-sel tertentu dari inangnya. Virus yang menyebabkan selesma menyerang saluran pernapasan, virus campak menginfeksi kulit, virus hepatitis menginfeksi hati, dan virus rabies menyerang sel-sel saraf. Begitu juga yang terjadi pada penyakit AIDS (acquired immune deficiency syndrome), yaitu suatu penyakit yang mengakibatkan menurunnya daya tahan tubuh penderita penyakit tersebut disebabkan oleh virus HIV yang secara khusus menyerang sel darah putih.[53] Tabel berikut ini memuat beberapa macam penyakit yang disebabkan oleh virus.[53]

Selain manusia, virus juga menyebabkan kesengsaraan bagi hewan dan tumbuhan.[53] Tidak sedikit pula kerugian yang diderita peternak atau petani akibat ternaknya yang sakit atau hasil panennya yang berkurang.[53]

Penyakit hewan akibat virus

Penyakit tetelo, yakni jenis penyakit yang menyerang bangsa unggas, terutama ayam. Penyebabnya adalah new castle disease virus (NCDV).[53] Penyakit kuku dan mulut, yakni jenis penyakit yang menyerang ternak sapi dan kerbau.[53] Penyakit kanker pada ayam oleh rous sarcoma virus (RSV).[53] Penyakit rabies, yakni jenis penyakit yang menyerang anjing, kucing, dan monyet, disebabkan oleh virus rabies.[53]

Penyakit tumbuhan akibat virus

Penyakit mosaik, yakni jenis penyakit yang menyerang tanaman tembakau.[6] Penyebabnya adalah tobacco mosaic virus (TMV) Penyakit tungro, yakni jenis penyakit yang menyerang tanaman padi.[6] Penyebabnya adalah virus Tungro.[6] Penyakit degenerasi pembuluh tapis pada jeruk. Penyebabnya adalah virus citrus vein phloem degeneration (CVPD).[6]

Penyakit manusia akibat virus

Contoh paling umum dari penyakit yang disebabkan oleh virus adalah pilek (yang bisa saja disebabkan oleh satu atau beberapa virus sekaligus), cacar, AIDS (yang disebabkan virus HIV), dan demam herpes (yang disebabkan virus herpes simpleks).[54] Kanker leher rahim juga diduga disebabkan sebagian oleh papilomavirus (yang menyebabkan papiloma, atau kutil), yang memperlihatkan contoh kasus pada manusia yang memperlihatkan hubungan antara kanker dan agen-agen infektan.[54] Juga ada beberapa kontroversi mengenai apakah virus borna, yang sebelumnya diduga sebagai penyebab penyakit saraf pada kuda, juga bertanggung jawab kepada penyakit psikiatris pada manusia.[54]

Potensi virus untuk menyebabkan wabah pada manusia menimbulkan kekhawatiran penggunaan virus sebagai senjata biologis. Kecurigaan meningkat seiring dengan ditemukannya cara penciptaan varian virus baru di laboratorium.[54]

Kekhawatiran juga terjadi terhadap penyebaran kembali virus sejenis cacar, yang telah menyebabkan wabah terbesar dalam sejarah manusia, dan mampu menyebabkan kepunahan suatu bangsa.[54] Beberapa suku bangsa Indian telah punah akibat wabah, terutama penyakit cacar, yang dibawa oleh kolonis Eropa.[54] Meskipun sebenarnya diragukan dalam jumlah pastinya, diyakini kematian telah terjadi dalam jumlah besar.[54] Penyakit ini secara tidak langsung telah membantu dominasi bangsa Eropa di dunia baru Amerika.[54]

Salah satu virus yang dianggap paling berbahaya adalah filovirus.[54] Grup Filovirus terdiri atas Marburg, pertama kali ditemukan tahun 1967 di Marburg, Jerman, dan ebola.[54] Filovirus adalah virus berbentuk panjang seperti cacing, yang dalam jumlah besar tampak seperti sepiring mi.[54] Pada April 2005, virus Marburg menarik perhatian pers dengan terjadinya penyebaran di Angola. Sejak Oktober 2004 hingga 2005, kejadian ini menjadi epidemi terburuk di dalam kehidupan manusia.[54]

Diagnosis di laboratorium

Deteksi, isolasi, hingga analisis suatu virus biasanya melewati proses yang sulit dan mahal.[55] Karena itu, penelitian penyakit akibat virus membutuhkan fasilitas besar dan mahal, termasuk juga peralatan yang mahal dan tenaga ahli dari berbagai bidang, misalnya teknisi, ahli biologi molekular, dan ahli virus.[55] Biasanya proses ini dilakukan oleh lembaga kenegaraan atau dilakukan secara kerjasama dengan bangsa lain melalui lembaga dunia seperti Organisasi Kesehatan Dunia (WHO).[55]

Pencegahan dan pengobatan

Karena biasanya memanipulasi mekanisme sel induknya untuk bereproduksi, virus sangat sulit untuk dibunuh.[56] Metode pengobatan sejauh ini yang dianggap paling efektif adalah vaksinasi, untuk merangsang kekebalan alami tubuh terhadap proses infeksi, dan obat-obatan yang mengatasi gejala akibat infeksi virus.[56]

Penyembuhan penyakit akibat infeksi virus biasanya disalah-antisipasikan dengan penggunaan antibiotik, yang sama sekali tidak mempunyai pengaruh terhadap kehidupan virus.[56] Efek samping penggunaan antibiotik adalah resistansi bakteri terhadap antibiotik.[56] Karena itulah diperlukan pemeriksaan lebih lanjut untuk memastikan apakah suatu penyakit disebabkan oleh bakteri atau virus.[56]

Infeksi virus atau bakteri pada umumnya menimbulkan demam, hanya saja infeksi bakteri akan meningkatkan kadar Sel darah putih, sedangkan infeksi virus tidak, tetapi infeksi bakteri, virus bahkan jamur akan meningkatkan kadar Antibodi M (IgM), tetapi pemeriksaan IgM agak mahal. Pemeriksaan Sel darah putih ataupun IgM tidak dapat menentukan jenis penyakitnya, tetapi kedua pemeriksaan tersebut hanya mengindikasikan penyakit tersebut diakibatkan oleh apa. Jika biaya menjadi kendala, maka pemeriksaan Sel darah putih saja sudah cukup, karena infeksi virus tidak dapat diobati dengan anti-biotik dan pada umumnya infeksi virus akan sembuh dengan sendirinya (virus self limiting life) dengan istirahat (istirahat penuh di ranjang, jika perlu) dan gizi yang cukup, kecuali HIV di mana untuk diagnosis awal diperlukan pemeriksaan CD4 yang relatif murah.

Lihat pula

Referensi

  1. ^ Koonin, Eugene V.; Senkevich, Tatiana G.; Dolja, Valerian V. (2006-09-19). "The ancient Virus World and evolution of cells". Biology Direct. 1: 29. doi:10.1186/1745-6150-1-29. ISSN 1745-6150. PMC 1594570 . PMID 16984643. 
  2. ^ Koonin, Eugene V.; Starokadomskyy, Petro (2016-10). "Are viruses alive? The replicator paradigm sheds decisive light on an old but misguided question". Studies in History and Philosophy of Biological and Biomedical Sciences. 59: 125–134. doi:10.1016/j.shpsc.2016.02.016. ISSN 1879-2499. PMC 5406846 . PMID 26965225. 
  3. ^ a b "virus (n.)". Etymonline. Diakses tanggal 8 April 2020. 
  4. ^ "virulent (adj.)". Etymonline. Diakses tanggal 8 April 2020. 
  5. ^ "viral (adj.)". Etymonline. Diakses tanggal 8 April 2020. 
  6. ^ a b c d e f g h Akin, H.M. (2005). Virologi Tumbuhan (Didigitalisasi oleh Google Penelusuran Buku). Yogyakarta: Kanisius. hlm. hlm. 17. ISBN 9792111808, 9789792111804 Periksa nilai: invalid character |isbn= (bantuan). Diakses tanggal 2009-03-13. 
  7. ^ Campbell et al. (2002), hlm. 341. Diakses pada 26 Maret 2009.
  8. ^ Creager, A.N.H. (2002). The life of a virus: tobacco mosaic virus as an experimental model, 1930-1965 (Didigitalisasi oleh Google Penelusuran Buku) (edisi ke-Edisi ke-2). Chicago: University of Chicago Press. hlm. hlm. 119. ISBN 0226120260, 9780226120263 Periksa nilai: invalid character |isbn= (bantuan). Diakses tanggal 2009-03-26. 
  9. ^ a b c d Rous P (1911). "A sarcoma of the fowl transmissible by an agent separable from the tumor cells" (pdf). J Exp Med. 13: 397–399. 
  10. ^ a b Shope RE (1933). "Infectious papillomatosis of rabbits; with a note on the histopathology" (pdf). J Exp Med. 58: 607. 
  11. ^ a b c Stanley WM (1933). "Isolation of a crystalline protein possessing the properties of tobacco mosaic virus" (pdf). Science. 81: 644–645. 
  12. ^ a b Hershey AD, Chase M (1952). "Independent Function of Viral Protein and Nucleic Acid in Growth of Bacteriophage" (pdf). Journal of General Physiology. 36: 39–56. 
  13. ^ Shors 2017, hlm. 16.
  14. ^ Collier dkk. 1998, hlm. 18–19.
  15. ^ Liu Y, Nickle DC, Shriner D, Jensen MA, Learn GH, Mittler JE, Mullins JI (November 2004). "Molecular clock-like evolution of human immunodeficiency virus type 1". Virology. 329 (1): 101–08. doi:10.1016/j.virol.2004.08.014. PMID 15476878. 
  16. ^ a b Krupovic M, Dooja W, Koonin EV (2019). "Origin of viruses: primordial replicators recruiting capsids from hosts". Nature Reviews Microbiology. 17 (7): 449–58. doi:10.1038/s41579-019-0205-6. PMID 31142823. 
  17. ^ Collier dkk. 1998, hlm. 11–21.
  18. ^ Collier dkk. 1998, hlm. 11–12.
  19. ^ a b Wessner DR (2010). "The Origins of Viruses". Nature Education. 3 (9): 37. 
  20. ^ Nasir A, Kim KM, Caetano-Anollés G (2012). "Viral evolution: Primordial cellular origins and late adaptation to parasitism". Mobile Genetic Elements. 2 (5): 247–52. doi:10.4161/mge.22797. PMID 23550145. 
  21. ^ Koonin, E.V.; Starokadomskyy, P. (7 Maret 2016). "Are viruses alive? The replicator paradigm sheds decisive light on an old but misguided question". Stud Hist Philos Biol Biomed Sci. 59: 125–34. doi:10.1016/j.shpsc.2016.02.016. PMC 5406846 . PMID 26965225. 
  22. ^ Rybicki EP (1990). "The classification of organisms at the edge of life, or problems with virus systematics". South African Journal of Science. 86: 182–86. 
  23. ^ Holmes EC (October 2007). "Viral evolution in the genomic age". PLOS Biology. 5 (10): e278. doi:10.1371/journal.pbio.0050278. PMC 1994994 . PMID 17914905. 
  24. ^ Wimmer E, Mueller S, Tumpey TM, Taubenberger JK (December 2009). "Synthetic viruses: a new opportunity to understand and prevent viral disease". Nature Biotechnology. 27 (12): 1163–72. doi:10.1038/nbt.1593. PMC 2819212 . PMID 20010599. 
  25. ^ Horn M (2008). "Chlamydiae as symbionts in eukaryotes". Annual Review of Microbiology. 62: 113–31. doi:10.1146/annurev.micro.62.081307.162818. PMID 18473699. 
  26. ^ Ammerman NC, Beier-Sexton M, Azad AF (November 2008). "Laboratory maintenance of Rickettsia rickettsii". Current Protocols in Microbiology. Chapter 3 (1): Unit 3A.5. doi:10.1002/9780471729259.mc03a05s11. ISBN 978-0471729259. PMC 2725428 . PMID 19016440. 
  27. ^ Koonin EV, Senkevich TG, Dolja VV (September 2006). "The ancient Virus World and evolution of cells". Biology Direct. 1 (1): 29. doi:10.1186/1745-6150-1-29. PMC 1594570 . PMID 16984643. 
  28. ^ a b c Campbell et al. (2002), hlm. 342. Diakses pada 26 Maret 2009.
  29. ^ a b c d e f g h i Wagner (2008), Basic Virology, Australia: Blackwell Publishing, ISBN 2007019839 Periksa nilai: checksum |isbn= (bantuan)  (lihat di Penelusuran Buku Google)
  30. ^ a b c d e Wagner (2008), Basic Virology, Australia: Blackwell Publishing, ISBN 2007019839 Periksa nilai: checksum |isbn= (bantuan)  (lihat di Penelusuran Buku Google)
  31. ^ a b c d e Mahy, BWJ.; van Regenmortel, MHW. (2010), Desk Encyclopedia of General Virology, San Diego: Elsevier, ISBN 978-0-12-375145-1 Periksa nilai: checksum |isbn= (bantuan)  (lihat di Penelusuran Buku Google)
  32. ^ a b Mahy, BWJ.; van Regenmortel, MHW. (2010), Desk Encyclopedia of General Virology, San Diego: Elsevier, ISBN 978-0-12-375145-1 Periksa nilai: checksum |isbn= (bantuan)  (lihat di Penelusuran Buku Google)
  33. ^ a b Strauss, JH.; Strauss, EG. (2008), Viruses and Human Disease, London: Elsevier, ISBN 978-0-12-375145-1 Periksa nilai: checksum |isbn= (bantuan)  (lihat di Penelusuran Buku Google)
  34. ^ Pandoravirus, Virus Super Raksasa PortalKBR, 22 Juli 2013
  35. ^ a b c d e f Schneider-Schaulies J (2000). "Cellular receptors for viruses: links to tropism and pathogenesis" (pdf). Journal of General Virology. 81: 1413–1429. 
  36. ^ a b c d e Olson NH (1992). "Structure of a human rhinovirus complexed with its receptormolecule" (pdf). Proc. Natl. Acad. Sci. USA. 90: 507–511. 
  37. ^ a b Yongning H. (2000). "Interaction of the poliovirus receptor with poliovirus" (pdf). PNAS. 97: 79–84. 
  38. ^ a b c d Hidari KIPJ (2010). "Glycan Receptor for Influenza Virus" (pdf). The Open Antimicrobial Agents Journal. 2: 26–33. 
  39. ^ a b c d e f g h i j k l m n o Mahy, BWJ.; van Regenmortel, MHW. (2010), Desk Encyclopedia of General Virology, San Diego: Elsevier, ISBN 978-0-12-375145-1 Periksa nilai: checksum |isbn= (bantuan)  (lihat di Penelusuran Buku Google)
  40. ^ Cossart, P (2005), Cellular Microbiology, Washington DC: American Society for Microbiology Press, ISBN 1-55581-302-X  (lihat di Penelusuran Buku Google)
  41. ^ a b c d Cheng, H.; Hammar, L. (2004), Cellular Microbiology, Singapore: World Scientifis Publishing Co. Pte. Ltd., ISBN 981-238-614-9  (lihat di Penelusuran Buku Google) Kesalahan pengutipan: Tanda <ref> tidak sah; nama "Cheng" didefinisikan berulang dengan isi berbeda
  42. ^ Carter, JB.; Saunders, VA. (2007), Virology: Principles and Applications, England: John Wiley & Sons, Ltd., ISBN 978-0-470-023860-0 Periksa nilai: length |isbn= (bantuan)  (lihat di Penelusuran Buku Google)
  43. ^ a b c d e f g h i j k l Wagner (2008), Basic Virology, Australia: Blackwell Publishing, ISBN 2007019839 Periksa nilai: checksum |isbn= (bantuan)  (lihat di Penelusuran Buku Google)
  44. ^ Lwoff A, Horne RW, Tournier P (June 1962). "[A virus system]". Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences (dalam bahasa French). 254: 4225–7. PMID 14467544. 
  45. ^ Lwoff A, Horne R, Tournier P (1962). "A system of viruses". Cold Spring Harbor Symposia on Quantitative Biology. 27: 51–5. doi:10.1101/sqb.1962.027.001.008. PMID 13931895. 
  46. ^ Fauquet CM, Fargette D (August 2005). "International Committee on Taxonomy of Viruses and the 3,142 unassigned species". Virology Journal. 2: 64. doi:10.1186/1743-422X-2-64. PMC 1208960 . PMID 16105179. 
  47. ^ Delwart EL (2007). "Viral metagenomics". Reviews in Medical Virology. 17 (2): 115–31. doi:10.1002/rmv.532. PMID 17295196. 
  48. ^ ICTV (2018a). "ICTV Code: The International Code of Virus Classification and Nomenclature October 2018". International Committee on Taxonomy of Viruses (ICTV) (dalam bahasa Inggris). Diakses tanggal 16 Agustus 2019. 
  49. ^ ICTV Virus Taxonomy ICTV Virus Taxonomy Release History
  50. ^ a b c d Carter, JB.; Saunders, VA. (2007), Virology: Principles and Application, England: John Wiley & Sons Ltd., ISBN 978-0-470-02386-0  (lihat di Penelusuran Buku Google)
  51. ^ Cheville, NF. (1994), Ultrastructural Pathology : an Introduction to Interpretion, Iowa: Iowa State University Press, ISBN 0-8138-2398-6  (lihat di Penelusuran Buku Google)
  52. ^ Cheville, NF. (1994), Ultrastructural Pathology : an Introduction to Interpretion, Iowa: Iowa State University Press, ISBN 0-8138-2398-6  (lihat di Penelusuran Buku Google)g
  53. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa Evans, AS.; Kaslow, RA. (1997), Viral Infections of Humans:epidemiology and Control, New York: Plenum Publishing Corporation, ISBN 0-306-44856-4  (lihat di Penelusuran Buku Google)
  54. ^ a b c d e f g h i j k l Crowley, LV. (2010), An Introduction to Human Disease: Pathology and Pathophysiology, Sudburry: Jones and Bartlett Publishers, ISBN 978-0-7637-6591-0  (lihat di Penelusuran Buku Google)
  55. ^ a b c Zuckerman, AJ.; Banatvala, JE.; Griffiths, P. (2009), Principles and Practice of Clinical Virology, England: John Wiley & Sons Ltd., ISBN 978-0-470-51799-4  (lihat di Penelusuran Buku Google)
  56. ^ a b c d e Singh, M. (2007), Vaccine Adjuvants and Delivery Systems, New Jersey: John Wiley & Sons Ltd., ISBN 978-0-471-73907-4  (lihat di Penelusuran Buku Google)

Bacaan lanjutan

  • Aryulina, Diah (2007). Biologi 1 SMA dan MA Untuk Kelas X. Jakarta: Esis/Erlangga. ISBN 974-734-549-1.  (Indonesia)

Pranala luar