Teorema Pythagoras
Artikel ini sedang dalam perbaikan. CATATAN: Masih proses pengembangan. Untuk menghindari konflik penyuntingan, mohon jangan melakukan penyuntingan selama pesan ini ditampilkan. Halaman ini terakhir disunting oleh PinkDash (Kontrib • Log) 1637 hari 952 menit lalu. |
Dalam matematika, teorema Pythagoeran, juga dikenal sebagai teorema Pythagoras, adalah hubungan mendasar dalam geometri Euclidean di antara tiga sisi segitiga siku-siku. Ini menyatakan bahwa luas kotak yang sisinya adalah sisi miring (sisi yang berlawanan dengan sudut kanan) sama dengan jumlah area kotak di dua sisi lainnya. Teorema ini dapat ditulis sebagai persamaan yang menghubungkan panjang sisi a, b dan c, sering disebut "persamaan Pythagoras":[1]
di mana c mewakili panjang sisi miring dan a dan b panjang dari dua sisi segitiga lainnya. Teorema itu, yang sejarahnya menjadi pokok perdebatan, dinamai untuk pemikir Yunani kuno Pythagoras.[2]
Teorema ini telah diberikan banyak bukti - mungkin yang paling banyak untuk setiap teorema matematika. Mereka sangat beragam, termasuk bukti geometris dan bukti aljabar, dengan beberapa berasal dari ribuan tahun yang lalu. Teorema dapat digeneralisasi dalam berbagai cara, termasuk ruang dimensi tinggi, ke ruang yang bukan Euclidean, ke objek yang bukan segitiga siku-siku, dan memang, untuk objek yang bukan segitiga sama sekali, tetapi padatan n-dimensi. Teorema Pythagoras telah menarik minat di luar matematika sebagai simbol kemustahilan matematika, mistik, atau kekuatan intelektual; referensi populer dalam sastra, drama, musikal, lagu, perangko dan kartun berlimpah.
Bukti penataan ulang
Dua kotak besar yang ditunjukkan pada gambar masing-masing berisi empat segitiga identik, dan satu-satunya perbedaan antara dua kotak besar adalah bahwa segitiga diatur secara berbeda. Oleh karena itu, ruang putih dalam masing-masing dari dua kotak besar harus memiliki luas yang sama. Menyamakan luas ruang putih menghasilkan teorema Pythagoras, Q.E.D.
Heath memberikan bukti ini dalam komentarnya tentang Proposisi I.47 dalam Elemen Euclid, dan menyebutkan proposal Bretschneider dan Hankel bahwa Pythagoras mungkin telah mengetahui bukti ini. Heath sendiri lebih menyukai proposal yang berbeda untuk bukti Pythagoras, tetapi mengakui dari permulaan diskusinya "bahwa literatur Yunani yang kita miliki milik lima abad pertama setelah Pythagoras tidak berisi pernyataan yang menyebutkan hal ini atau penemuan geometrik besar lainnya kepadanya."[3] Beasiswa terbaru telah menimbulkan keraguan yang semakin besar pada segala jenis peran untuk Pythagoras sebagai pencipta matematika, meskipun perdebatan tentang ini terus berlanjut.[4]
Bentuk-bentuk teorema lainnya
Jika c menunjukkan panjang sisi miring dan a dan b menunjukkan panjang dari dua sisi lainnya, teorema Pythagoras dapat dinyatakan sebagai persamaan Pythagoras:
Jika panjang a dan b diketahui, maka c dapat dihitung sebagai
Jika panjang sisi miring c dan satu sisi (a atau b) diketahui, maka panjang sisi lainnya dapat dihitung sebagai
atau
Persamaan Pythagoras menghubungkan sisi-sisi segitiga siku-siku dengan cara yang sederhana, sehingga jika panjang kedua sisi diketahui panjang sisi ketiga dapat ditemukan. Akibat wajar lain dari teorema adalah bahwa dalam segitiga siku-siku mana, sisi miring lebih besar daripada salah satu sisi lain, tetapi kurang dari jumlah mereka.
Generalisasi teorema ini adalah hukum cosinus, yang memungkinkan perhitungan panjang setiap sisi dari segitiga apa pun, mengingat panjang dua sisi lainnya dan sudut di antara keduanya. Jika sudut antara sisi lain adalah sudut kanan, hukum cosinus mereduksi menjadi persamaan Pythagoras.
Bukti teorema lainnya
Teorema ini mungkin memiliki bukti lebih dikenal daripada yang lain (hukum timbal balik kuadrat menjadi pesaing lain untuk perbedaan itu); buku The Pythagoras Proposition berisi 370 bukti.[5]
Bukti menggunakan segitiga serupa
Bukti ini didasarkan pada Kesebandingan sisi-sisi dari dua segitiga yang sama, yaitu, pada kenyataan bahwa rasio dari setiap dua sisi yang sesuai dari segitiga yang sama adalah sama terlepas dari ukuran segitiga.
Biarkan ABC mewakili segitiga siku-siku, dengan sudut kanan terletak di C, seperti yang ditunjukkan pada gambar. Gambar ketinggian dari titik C, dan dikatakan H persimpangan dengan sisi AB. Titik H membagi panjang sisi miring c menjadi bagian d dan e. ACH segitiga baru sama dengan segitiga ABC, karena mereka berdua memiliki sudut kanan (menurut definisi ketinggian), dan mereka berbagi sudut pada A, yang berarti bahwa sudut ketiga akan sama di kedua segitiga juga, ditandai sebagai θ pada gambar. Dengan alasan yang sama, segitiga CBH juga mirip dengan ABC. Bukti kesamaan segitiga membutuhkan postulat segitiga: jumlah sudut dalam segitiga adalah dua sudut kanan, dan setara dengan postulat paralel. Kesamaan segitiga menyebabkan rasio kesetaraan dari sisi yang sesuai:
Hasil pertama menyamakan cosinus dari sudut θ, sedangkan hasil kedua menyamakan sinus mereka.
Rasio ini dapat ditulis sebagai
Menjumlahkan kedua persamaan ini menghasilkan
yang, setelah penyederhanaan, mengekspresikan teorema Pythagoras:
Peran bukti ini dalam sejarah adalah subjek banyak spekulasi. Pertanyaan mendasarnya adalah mengapa Euclid tidak menggunakan bukti ini, tetapi menemukan yang lain. Salah satu dugaan adalah bahwa bukti dari segitiga yang sama melibatkan teori proporsi, topik yang tidak dibahas sampai nanti dalam Elemen, dan bahwa teori proporsi membutuhkan pengembangan lebih lanjut pada waktu itu.[6][7]
Bukti Euclid
Secara garis besar, berikut adalah bagaimana bukti dalam Elemen Euclid berasal. Kotak besar dibagi menjadi persegi panjang kiri dan kanan. Sebuah segitiga dibangun yang memiliki setengah luas persegi panjang kiri. Kemudian segitiga lain dibangun yang memiliki setengah luas persegi di sisi paling kiri. Dua segitiga ini terbukti kongruen, membuktikan bahwa persegi ini memiliki area yang sama dengan persegi panjang kiri. Argumen ini diikuti oleh versi yang sama untuk persegi panjang kanan dan persegi yang tersisa. Menempatkan dua persegi panjang bersama-sama untuk mereformasi alun-alun pada sisi miring, luasnya sama dengan jumlah luas dari dua kotak lainnya. Detailnya mengikuti.
Biarkan A, B, C menjadi simpul dari segitiga siku-siku, dengan sudut siku-siku pada A. Letakkan tegak lurus dari A ke sisi yang berlawanan dengan sisi miring dalam persegi pada sisi miring. Garis itu membagi persegi pada sisi miring menjadi dua persegi panjang, masing-masing memiliki luas yang sama dengan salah satu dari dua kotak pada kaki.
Untuk bukti formal, kami membutuhkan empat lemmata dasar:
- Jika dua segitiga memiliki dua sisi yang satu sama dengan dua sisi yang lain, masing-masing untuk masing-masing, dan sudut yang dimasukkan oleh sisi yang sama, maka segitiga adalah kongruen (sisi-sudut-sisi).
- Luas segitiga adalah setengah luas dari setiap jajar genjang pada alas yang sama dan memiliki ketinggian yang sama.
- Luas persegi panjang sama dengan produk dari dua sisi yang berdekatan.
- Luas kotak sama dengan produk dari dua sisinya (mengikuti dari 3).
Selanjutnya, setiap bujur sangkar terkait dengan kongruen segitiga dengan segitiga lain yang terkait pada gilirannya dengan salah satu dari dua persegi panjang yang membentuk kuadrat bawah.[8]
Buktinya adalah sebagai berikut:
- Biarkan ACB menjadi segitiga siku-siku dengan CAB sudut kanan.
- Di setiap sisi BC, AB, dan CA, kotak digambar, CBDE, BAGF, dan ACIH, dalam urutan itu. Pembangunan kotak membutuhkan teorema yang mendahului Euclid, dan tergantung pada dalil paralel.[9]
- Dari A, gambar garis sejajar dengan BD dan CE. Ini akan memotong BC dan DE pada K dan L secara berurutan.
- Gabungkan dengan DF dan AD, untuk membentuk segitiga BCF dan BDA
- Sudut CAB dan BAG keduanya adalah sudut kanan; oleh karena itu C, A, dan G adalah kollinear. Demikian pula untuk B, A, dan H.
- Sudut CBD dan FBA keduanya sudut kanan; Oleh karena itu sudut ABD sama dengan sudut FBC, karena keduanya adalah jumlah dari sudut kanan dan sudut ABC.
- Karena AB sama dengan FB dan BD sama dengan BC, segitiga ABD harus kongruen dengan segitiga FBC.
- Karena AKL adalah garis lurus, sejajar dengan BD, maka persegi panjang BDLK memiliki dua kali luas segitiga ABD karena mereka berbagi basis BD dan memiliki ketinggian BK yang sama, yaitu, garis normal ke basis umum mereka, menghubungkan garis paralel BD dan AL. (lemma 2)
- Karena C adalah kollinear dengan A dan G, BAGF persegi harus dua kali luas untuk segitiga FBC.
- Oleh karena itu, persegi panjang BDLK harus memiliki area yang sama dengan persegi BAGF = AB2.
- Demikian pula, dapat ditunjukkan bahwa persegi panjang CKLE harus memiliki area yang sama dengan persegi ACIH = AC2.
- Tambahkan dua hasil ini, AB2 + AC2 = BD × BK + KL × KC
- Sejak BD = KL, BD × BK + KL × KC = BD(BK + KC) = BD × BC
- Karena itu, AB2 + AC2 = BC2, sejak CBDE adalah persegi.
Bukti ini, yang muncul dalam Elemen Euclid seperti pada Proposisi 47 dalam Buku 1,[10] menunjukkan bahwa luas kotak pada sisi miring adalah jumlah dari luas dua kotak lainnya.[11] Ini sangat berbeda dari pembuktian dengan kemiripan segitiga, yang diduga sebagai bukti bahwa Pythagoras digunakan.[12][13]
Bukti aljabar
Teoremanya dapat dibuktikan secara aljabar menggunakan empat salinan dari segitiga siku-siku dengan sisi a, b dan c, disusun di dalam kotak dengan sisi c seperti di bagian atas diagram.[14] Segitiga mirip dengan area , sedangkan kotak kecil memiliki sisi b − a dan area (b − a)2. Oleh karena itu luas persegi panjang
Tapi ini adalah persegi dengan sisi c dan luas c2, jadi
Bukti serupa menggunakan empat salinan dari segitiga yang sama disusun secara simetris di sekitar kotak dengan sisi c, seperti yang ditunjukkan di bagian bawah diagram.[15] Ini menghasilkan kotak yang lebih besar, dengan sisi a + b dan luas (a + b)2. Keempat segitiga dan sisi persegi c harus memiliki area yang sama dengan persegi yang lebih besar,
memberikan
Bukti terkait diterbitkan oleh Presiden Amerika James A. Garfield (kemudian Perwakilan A.S.) (lihat diagram).[16][17][18] Alih-alih menggunakan persegi, sebuah trapesium, yang dapat dibangun dari bujur sangkar di kedua bukti di atas dengan membagi dua diagonal dari dalam persegi, untuk memberikan trapesium seperti yang ditunjukkan pada diagram. Luas trapesium dapat dihitung menjadi setengah luas persegi, yaitu
Persegi bagian dalam juga dibelah dua, dan hanya ada dua segitiga sehingga buktinya berlangsung seperti di atas kecuali untuk faktor , yang dihapus dengan mengalikan dua untuk memberikan hasilnya.
Lihat pula
Bacaan Lebih Lanjut
- Siswono, Tatang Yuli Eko (2007). Matematika 2 SMP dan MTs untuk Kelas VIII. Jakarta: Esis/Erlangga. ISBN 979-734-666-8. (Indonesia)
Pranala luar
- ^ Sally, Judith D. (2007-01-01). Roots to Research: A Vertical Development of Mathematical Problems (dalam bahasa Inggris). American Mathematical Soc. ISBN 978-0-8218-7267-3.
- ^ Benson, Donald C. (2000). The Moment of Proof: Mathematical Epiphanies (dalam bahasa Inggris). Oxford University Press. ISBN 978-0-19-513919-8.
- ^ "Pythagorean theorem". Wikipedia (dalam bahasa Inggris). 2020-05-26.
- ^ Huffman, Carl (2005-02-23). "Pythagoras".
- ^ "Pythagorean theorem". Wikipedia (dalam bahasa Inggris). 2020-05-26.
- ^ (Maor 2007, hlm. 39)
- ^ Stephen W. Hawking (2005). God created the integers: the mathematical breakthroughs that changed history. Philadelphia: Running Press Book Publishers. hlm. 12. ISBN 0-7624-1922-9. This proof first appeared after a computer program was set to check Euclidean proofs.
- ^ See for example Pythagorean theorem by shear mapping Diarsipkan 2016-10-14 di Wayback Machine., Saint Louis University website Java applet
- ^ Jan Gullberg (1997). Mathematics: from the birth of numbers . W. W. Norton & Company. hlm. 435. ISBN 0-393-04002-X.
- ^ Elements 1.47 by Euclid. Retrieved 19 December 2006.
- ^ Euclid's Elements, Book I, Proposition 47: web page version using Java applets from Euclid's Elements by Prof. David E. Joyce, Clark University
- ^ Kesalahan pengutipan: Tag
<ref>
tidak sah; tidak ditemukan teks untuk ref bernamaHawking2
- ^ The proof by Pythagoras probably was not a general one, as the theory of proportions was developed only two centuries after Pythagoras; see (Maor 2007, hlm. 25)
- ^ Alexander Bogomolny. "Cut-the-knot.org: Pythagorean theorem and its many proofs, Proof #3". Cut the Knot. Diakses tanggal 4 November 2010.
- ^ Alexander Bogomolny. "Cut-the-knot.org: Pythagorean theorem and its many proofs, Proof #4". Cut the Knot. Diakses tanggal 4 November 2010.
- ^ Published in a weekly mathematics column: James A Garfield (1876). "Pons Asinorum". The New England Journal of Education. 3 (14): 161. as noted in William Dunham (1997). The mathematical universe: An alphabetical journey through the great proofs, problems, and personalities. Wiley. hlm. 96. ISBN 0-471-17661-3. and in A calendar of mathematical dates: April 1, 1876 Diarsipkan July 14, 2010, di Wayback Machine. by V. Frederick Rickey
- ^ Lantz, David. "Garfield's proof of the Pythagorean Theorem". Math.Colgate.edu. Diarsipkan dari versi asli tanggal 2013-08-28. Diakses tanggal 2018-01-14.
- ^ Maor, Eli, The Pythagorean Theorem, Princeton University Press, 2007: pp. 106-107.