Identitas trigonometri merupakan suatu identitas yang mencakup berbagai rumus-rumus trigonometri untuk mengkomputasi bentuk-bentuk yang elusif menjadi lebih mudah. Untuk memverifikasi suatu identitas trigonometri, dibutuhkanlah suatu bukti-bukti identitas trigonometri. Berikut adalah kumpulan bukti-bukti identitas trigonometri.

Fungsi trigonometri elementer

Definisi fungsi trigonometri

 
Segitiga siku-siku  , dengan  ,   adalah hipotenusa,   adalah sisi depan dan   adalah sisi samping

Untuk memulai pemahaman identitas, kita perlu memahami definisi dari keenam fungsi trigonometri. Perhatikan bahwa trigonometri mengaitkan sudut-sudut dan sisi-sisi segitiga siku-siku. Suatu fungsi tersebut didefinisikan sebagai berikut.

Secara geometri, sinus pada sudut   sama dengan rasio sisi depan dengan hipotenusa, sementara kosinus pada sudut   sama dengan rasio sisi samping dengan hipotenusa. Misal  ,  , dan   adalah sisi depan, sisi miring, dan hipotenusa.

 

 

 

 

 

(1)

 

 

 

 

 

(2)

Secara geometri, tangen pada   sama dengan rasio sisi depan dengan sisi samping. Kita rumuskan secara matematis, yaitu:

 

 

 

 

 

(3)

Fungsi tangen juga merupakan rasio fungsi trigonometri sinus dan kosinus. Untuk membuktikannya, cukup menggunakan rumus di atas dan mengeksploitasinya dengan memakai sifat-sifat pembatalan aljabar.

 

 

 

 

 

(4)

Fungsi kosekan, sekan, dan kotangen merupakan invers perkalian dari sinus, kosinus, dan tangen. Ketiganya dirumuskan sebagai

 

 

 

 

 

(5)

 

 

 

 

 

(6)

 

 

 

 

 

(7)

Identitas Pythagoras

Jumlah dan selisih sudut