Purina

senyawa kimia

Purina (1) adalah sebuah senyawa organik heterosiklik aromatik, yang terdiri dari cincin pirimidina dan cincin imidazola yang bergandeng sebelahan. Purina merupakan salah satu dari dua grup basa nitrogen. Purina, termasuk purina-purina bersubstitusi dan berbagai tautomernya, adalah heterosiklik bernitrogen yang paling banyak tersebar di alam. [1]

Purina
Nama
Nama IUPAC
7H-purina
Penanda
Model 3D (JSmol)
3DMet {{{3DMet}}}
ChemSpider
Nomor EC
Nomor RTECS {{{value}}}
  • C1=C2C(=NC=N1)N=CN2
Sifat
C5H4N4
Massa molar 120,112
Titik lebur 214 °C
Kecuali dinyatakan lain, data di atas berlaku pada suhu dan tekanan standar (25 °C [77 °F], 100 kPa).
Referensi

Purina dan Pirimidina merupakan dua golongan yang membentuk nitrogen basa- nitrogen basa, termasuk kedua golongan basa nukleat. Dua dari keempat deoxyribonucleotide dan dua dari keempat ribonucleotide, yang merupakan bahan bangunan pokok dari DNA dan RNA, adalah purina.


Purina yang terkenal

Jumlah purina yang terjadi secara alami di bumi sangat banyak, karena 50% basa dalam asam nukleat, adenina (2) dan guanina (3) adalah purinai Dalam DNA, basa-basa ini membentuk ikatan hidrogen dengan komplementernya pirimidina timina dan sitosina. Ini disebut pasangan basa komplementer. Dalam RNA, komplemen dari adenina adalah urasil (U) dan bukannya timina.

Purin terkenal lainnya adalah hipoxantina (4), xantina (5), teobromina (6), kafeina (7), asam urat (8) dan isoguanina (9).

 

Fungsi

Selain dari DNA dan RNA, purina merupakan komponen biokimia yang penting dalam sejumlah biomolekul penting lainnya, seperti ATP, GTP, AMP siklik, NADH, dan koenzim A. Purina (1) sendiri, belum ditemukan dalam alam, tetapi dapat diproduksi dengan cara sintesis organik.

Sejarah

Nama 'purina' (purum uricum) diusulkan oleh kimiawan Jerman Emil Fischer pada 1884. Dia mensintesis purin pertama kalinya pada 1899.[2] Bahan awal dari runtutan reaksinya adalah uric acid (8), yang diisolasi dari batu ginjal oleh Scheele pada tahun 1776.[3] Uric acid (8) direaksikan dengan PCl5 yang menghasilkan 2,6,8-trichloropurine (10), yang kemudian dikonversi dengan menggunakan HI and PH4I dan menghasilkan 2,6-diiodopurine (11). Produk ini lalu direduksi menjadi purina (1) dengan menggunakan serbuk timah.

 

Metabolisme

Banyak organisme memilik cara metabolik untuk mensintesis dan memecah purina.

Purina disintesis secara biologi sebagai nukleosida (basa yang menempel ke ribosa).

Sumber makanan

Purina ditemukan dalam konsentrasi tinggi dalam daging dan produk daging, terutama organ dalam seperti hati dan ginjal. Makanan dari tumbuhan biasanya mengandung sedikit purina.

Contoh makanan yang mengandung banyak purina adalah roti manis, teri, sardin, hati, ginjal sapi, otak, ekstrak daging (mis. Oxo, Bovril), hering, makerel, kerang, daging hewan liar buruan, dan gravy.

Purina juga cukup banyak terdapat dalam daging babi, unggas, ikan dan makanan laut lainnya, asparagus, kubis bunga, bayam (spinach), jamur, ercis, lentil, dried pea, buncis, havermut, kulit bulir gandum, dan "mata" bulir gandum.


Sintesis di dalam Lab

Purina (1) bisa didapat dengan hasil yang baik melalui pemanasan formamide dalam wadah terbuka pada suhu 170 oC selama 28 jam. [4]

 

Procedure: [4] Formamide (45 gram) dipanasi dalam wadah terbuka dilengkapi condenser selama 28 jam dicelup dalam minyak pemanas (oil bath) pada suhu 170-190 oC. Setelah mengeluarkan eksess formamide (32,1 gram) dengan menggunakan distilasi vakum, residunya lalu direflux dengan metanol. Larutan metanol kemudian disaring, dan pelarutnya dipisahkan dari filtratnya dengan menggunakan distilasi vakum. Hasilnya adalah produk yang hampir murni; 4,93 gram (71% yield dari formamide yang dipakai). Kristalisasi dengan aseton menghasilkan kristal purin yang jernih; titi leleh 218 oC.

Oro, Orgel, dkk. menunjukan bahwa empak molekul dari HCN ter-tetramer yang kemudian membentuk diaminomaleodinitrile (12), yang mana bisa dirubah menjadi bentuk-bentuk purin alamiah yang penting. [5][6][7][8][9]

 

Sintesis purin Traube (1900) adalah sebuah sintesis klasik (dari nama Wilhelm Traube) antara Pyrimidine bersubstitusi amine dan asam formic.

 


Referensi

  1. ^ Rosemeyer, H. Chemistry & Biodiversity 2004, 1, 361.
  2. ^ Fischer, E. Berichte der Deutschen Chemischen Gesellschaft 1899, 32, 2550.
  3. ^ Scheele, V. Q. Examen Chemicum Calculi Urinari, Opuscula, 1776, 2, 73.
  4. ^ a b Yamada, H.; Okamoto, T. Chemical & Pharmaceutical Bulletin, 1972, 20, 623.
  5. ^ Sanchez, R. A.; Ferris, J. P.; Orgel, L. E. Journal of Molecular Biology, 1967, 30, 223.
  6. ^ Ferris, J. P.; Orgel, L. E. Journal of the American Chemical Society, 1966, 88, 1074.
  7. ^ Ferris, J. P.; Kuder, J. E.; Catalano, O. W. Science, 1969, 166, 765.
  8. ^ Oro, J.; Kamat, J. S. Nature, 1961, 190, 442.
  9. ^ Houben-Weyl, Vol . E5, p. 1547

Lihat pula

Pranala luar