Integral takwajar
Dalam kalkulus, integral takwajar adalah limit dari integral tentu dengan batas pengintegralan mendekati bilangan riil tertentu, , , atau gabungan dari beberapa diantaranya. Integral takwajar dinotasikan seperti integral tentu, namun dengan batas pengintegralan tak hingga.
Kalkulus |
---|
Dengan kata lain, integral tak wajar adalah limit dengan bentuk
atau
dengan limit diambil pada salah satu atau kedua batasnya. (Apostol 1967, §10.23). Integral takwajar sering kali perlu digunakan untuk menghitung nilai integral yang tidak ada dalam arti konvensional (misalnya sebagai integral Riemann), karena adanya singularitas pada fungsi yang hendak diintegralkan, atau salah satu batas adalah takhingga.
Konvergensi integral
suntingIntegral yang tidak tepat menyatu jika batasan yang menentukannya adanya. Dengan demikian contohnya seorang mengatakan bahwa integral tak wajar pada nilai
ada dan sama dengan L jika integral di bawah batas untuk semua cukup besar t, dan nilai limitnya sama dengan L.
Hal ini juga mungkin untuk integral yang tidak tepat untuk menyimpang hingga tak terbatas. Dalam hal ini, seseorang dapat menetapkan nilai dari ∞ (atau -∞) ke integral. Contohnya
Namun sedemikian, integral tidak tepat lainnya mungkin hanya menyimpang ke arah tertentu, seperti nilai
yang tidak ada, bahkan sebagai bilangan riil diperpanjang. Ini disebut divergensi dengan osilasi.
Batasan dari teknik integr yang tidak tepat adalah bahwa batasan tersebut harus diambil sehubungan dengan satu titik akhir pada satu waktu. Jadi, integral tak wajar dari bentuk
dapat didefinisikan dengan mengambil dua batasan terpisah; yaitu
Hal ini.
Jenis integral
sunting- Dalam pengembangan -
Integral Riemann dan integral
sunting- Dalam pengembangan -
Lebesgue yang tidak tepat
sunting- Dalam pengembangan -
Singularitas
sunting- Dalam pengembangan -
Nilai pokok Cauchy
sunting- Dalam pengembangan -
Summability
sunting- Dalam pengembangan -
Integral tidak tepat multivariabel
sunting- Dalam pengembangan -
Contoh
suntingintegral Riemann tidak dapat didefinisikan untuk fungsi pada interval [1, ∞). Hal ini karena domain integral tersebut memiliki domain integrasi tak terbatas. Meskipun demikian, integral Riemann dapat memiliki nilai sebagai integral takwajar dengan menafsirkannya sebagai limit
Integral Riemann juga tidak dapat didefinisikan untuk fungsi pada interval [0, 1] karena integran tak terbatas pada domain integrasi. Meskipun demikian, integral tersebut dapat ditafsirkan sebagai limit
Referensi
sunting- Apostol, T (1967), Calculus, Vol. 1 (edisi ke-2nd), Jon Wiley & Sons.