Rumus Vieta

hubungan antara koefisien dan akar-akar dari suatu polinomial
Revisi sejak 18 Agustus 2020 07.47 oleh Symphonium264 (bicara | kontrib) (Dikembalikan ke revisi 17312162 oleh 123569yuuift (bicara))

Dalam matematika,Rumus Vieta adalah rumus antara koefisien pada polinomial bersama angka dan hasil nilai akarnya. Ditemukan oleh François Viète rumus tersebut digunakan secara khusus dalam aljabar.

François Viète matematikawan asal Prancis berhasil menemukan Rumus Vieta

Rumus Vieta dalam Persamaan Kuadrat

Definisi Rumus Vieta dalam Persamaan Kuadrat:

Jika diberikan   jika persamaannya   dalam akar kuadrat   dan  , yaitu

 

Bukti dari pernyataan tersebut akan diberikan di akhir bagian.

Jika rumus persamaan kuadrat dirumuskan  

 

Diatas merupakan rumus persamaan kuadrat yang membuktikan rumus kuadrat.

Rumus Vieta dalam Kuadrat

- Dalam pengembangan -

Rumus utama

Untuk nilai polinomial dengan hasil n

 

Rumus tersebut bersama teorema fundamental aljabar hanya memiliki nila n berbeda dengan akar kompleks r1, r2, ..., rn . Rumus Vieta menghubungkan koefisien polinomial dengan jumlah yang ditandatangani dari produk akar r1, r2, ..., rn sebagai berikut:

 

Rumus Vieta dapat dibuat secara ekuivalen sebagai

 

Generalisasi cincin

Rumus Vieta sering digunakan hubungan dengan polinomial hasil koefisien dalam domain integral R . Setelah itu hasil quotients   memiliki cincin pecahan R dan akarnya   diambil dalam ekstensi tertutup aljabar. Biasanya,

RumusR adalah cincin bilangan bulat, bidang pecahan adalah bidang bilangan rasional dan bidang yang ditutup secara aljabar adalah bidang bilangan kompleks .

Contoh

Rumus Vieta dapat diterapkan pada polinomial kuadrat dan kubik:

Akar kuadrat dari   dari polinomial kuadrat  , yaitu

 

Persamaan pertama dapat digunakan untuk mencari nilai minimum (atau maksimum) dari nilai P; lihat Persamaan kuadrat § Rumus Vieta.

Akar kuadrat dari   dari polinomial kubik  , yaitu

 

Pemecahan Masalah Rumus Vieta

Menunjukkan bahwa

 

untuk bilangan bulat apa pun  

Dengan ini yang pertama dengan menggunakan teorema De-Moivre untuk bilangan bulat positif m:

 

Saat dapat mengelompokkan RHS sebagai berikut sejak kami memilikinya  :

 

Menyamakan bagian imajiner di kiri dan kanan, kita dapatkan

 

Membiarkan nilai   maka persamaannya dalam u dan jumlah akarnya diberikan oleh   seperti yang kita ketahui dari formula Vieta. Sejak nilai  

 

Keterangan

Rumus Vieta dapat dibuktikan dengan memperluas persamaan:

 

(yang benar yaitu nilai   apakah semua akar dari polinomial ini), mengalikan faktor-faktor dari sisi kanan, dan mengidentifikasi koefisien dari masing-masing pangkat  

Secara formal, jika ada yang mengembang pada nilai   istilahnya adalah nilai   darimana nilai   adalah 0 atau 1, sesuai dengan apakah   termasuk dalam produk atau tidak, dan k adalah jumlah pada nilai   hal yang ini tidak seharusnya digunakan, jadi jumlah total faktor dalam produk adalah n (dengan perhitungan   dengan keserbaragaman k) sebagaimana adanya nilai n pilihan biner (yang termasuk perhitungan   atau x), dan   istilah tersebut dapat dicari dalam bentuk geometris, hal ini dapat memahami sebagai simpul dari kubusganda. Mengelompokkan persamaan tersebut berdasarkan derajat menghasilkan polinomial simetris dasar di   untuk nilai xk, mendapatkan semua produk lipat pada nilai k yang berbeda dari  

Sejarah

Seperti yang tercermin dalam namanya, rumus tersebut ditemukan oleh ahli matematika asal Prancis abad ke-16 François Viète, untuk kasus akar positif.

Menurut pendapat ahli matematika asal Inggris abad ke-18 Charles Hutton, seperti dikutip oleh Funkhouser,[1] prinsip utama (tidak hanya untuk akar nyata positif) pertama kali dipahami oleh ahli matematika Prancis abad ke-17 Albert Girard:

...[Girard was] orang pertama yang memahami doktrin umum pembentukan koefisien kekuatan dari jumlah akar dan produknya. Dia adalah orang pertama yang menemukan aturan untuk sum.

Referensi

  • Djukić, Dušan; et al. (2006), Ringkasan IMO: kumpulan masalah yang disarankan untuk Olimpiade Matematika Internasional, 1959–2004, Springer, New York, NY, ISBN 0-387-24299-6 


Katalog perpustakaan
dan Klasifikasi
BlissARS
ColonB2