Bentuk turunan

Revisi sejak 22 Agustus 2020 08.09 oleh Dimas Pnt (bicara | kontrib) (←Membuat halaman berisi 'Dalam statistika, dan khususnya dalam ekonometrika, '''bentuk turunan''' dari sistem persamaan adalah hasil dari penyelesaian sis...')
(beda) ← Revisi sebelumnya | Revisi terkini (beda) | Revisi selanjutnya → (beda)

Dalam statistika, dan khususnya dalam ekonometrika, bentuk turunan dari sistem persamaan adalah hasil dari penyelesaian sistem untuk variabel endogen. Ini memberikan yang terakhir sebagai fungsi dari variabel eksogen, jika ada. Dalam ekonometrik, persamaan model bentuk struktural diestimasi dalam bentuk yang diberikan secara teoritis, sedangkan pendekatan alternatif untuk estimasi adalah dengan terlebih dahulu menyelesaikan persamaan teoretis untuk variabel endogen untuk mendapatkan persamaan bentuk turunan, dan kemudian memperkirakan persamaan bentuk turunan.

Misalkan Y adalah vektor variabel yang akan dijelaskan (variabel endogen) oleh model statistik dan X adalah vektor variabel penjelas (eksogen). Selain itu biarkan menjadi vektor istilah kesalahan. Maka ekspresi umum dari suatu bentuk struktural adalah , di mana adalah sebuah fungsi, kemungkinan dari vektor ke vektor dalam kasus model persamaan ganda. Bentuk turunan dari model ini diberikan oleh , dengan sebagai fungsi.

Bentuk struktural dan tereduksi

Variabel eksogen adalah variabel yang tidak ditentukan oleh sistem. Jika kita mengasumsikan bahwa permintaan tidak hanya dipengaruhi oleh harga, tetapi juga oleh variabel eksogen, Z, kita dapat mempertimbangkan struktur model penawaran dan permintaan

Penawaran:     
Permintaan:    

dimana istilahnya adalah kesalahan acak (penyimpangan jumlah yang ditawarkan dan diminta dari yang tersirat oleh sisa setiap persamaan). Dengan mencari   dan   yang tidak diketahui (variabel endogen), model struktural ini dapat ditulis ulang dalam bentuk turunan:

 
 

dimana parameternya   tergantung pada parameternya   dari model struktural, dan di mana kesalahan bentuk dikurangi   masing-masing bergantung pada parameter struktural dan pada kedua kesalahan struktural. Perhatikan bahwa kedua variabel endogen tergantung pada variabel eksogen Z .

Jika model bentuk tereduksi diestimasi menggunakan data empiris, diperoleh nilai estimasi untuk koefisien  , beberapa parameter struktural dapat dipulihkan: Dengan menggabungkan dua persamaan bentuk tereduksi untuk menghilangkan Z , koefisien struktural model sisi suplai (  dan  ) dapat diturunkan:

 
 

Namun perlu dicatat, bahwa ini masih tidak memungkinkan kita untuk mengidentifikasi parameter struktural dari persamaan permintaan. Untuk itu, diperlukan variabel eksogen yang dimasukkan dalam persamaan penawaran model struktural, tetapi tidak dimasukkan dalam persamaan permintaan.

Kasus linier umum

Misalkan y adalah vektor kolom dari variabel endogen M. Dalam kasus di atas dengan Q dan P, kita mendapatkan M = 2. Misalkan z adalah vektor kolom dari variabel eksogen K ; dalam kasus di atas z hanya terdiri dari Z. Model linier struktural adalah

 

dimana   adalah vektor guncangan struktural, dan A dan B adalah matriks; A adalah persegi M  × M matriks, sedangkan B adalah M × K . Bentuk tereduksi dari sistem tersebut adalah:

 

dengan vektor   dari kesalahan bentuk tereduksi yang masing-masing bergantung pada semua kesalahan struktural, di mana matriks A harus nonsingular agar bentuk tereduksi ada dan unik. Sekali lagi, setiap variabel endogen bergantung pada potensi setiap variabel eksogen.

Tanpa batasan pada A dan B , koefisien A dan B tidak dapat diidentifikasi dari data pada y dan z : setiap baris model struktural hanyalah hubungan linier antara y dan z dengan koefisien yang tidak diketahui. (Ini lagi-lagi masalah identifikasi parameter. Persamaan bentuk tereduksi M (baris persamaan matriks y = Π z di atas) dapat diidentifikasi dari data karena masing-masing hanya berisi satu variabel endogen.

Lihat juga

Bacaan lanjut

Pranala luar