Sistem koordinat polar
Sistem koordinat polar (sistem koordinat kutub) dalam matematika adalah suatu sistem koordinat 2-dimensi di mana setiap titik pada bidang ditentukan dengan jarak dari suatu titik yang telah ditetapkan dan suatu sudut dari suatu arah yang telah ditetapkan.
Titik yang telah ditetapkan (analog dengan titik origin dalam sistem koordinat Kartesius) disebut pole atau "kutub", dan ray atau "sinar" dari kutub pada arah yang telah ditetapkan disebut "aksis polar" (polar axis). Jarak dari suatu kutub disebut radial coordinate atau radius, dan sudutnya disebut angular coordinate, polar angle, atau azimuth.[1]
Grégoire de Saint-Vincent dan Bonaventura Cavalieri secara independen memperkenalkan konsep-konsep tersebut pada pertengahan abad ketujuh belas, meskipun istilah sebenarnya koordinat polar telah dikaitkan. Motivasi awal untuk pengenalan sistem polar adalah mempelajari melingkar dan gerakan orbital.
Koordinat polar paling tepat dalam konteks apa pun di mana fenomena yang dipertimbangkan secara inheren terikat pada arah dan panjang dari titik pusat pada bidang, seperti spiral. Sistem fisik planar dengan benda-benda bergerak di sekitar titik pusat, atau fenomena yang berasal dari titik pusat, sering kali lebih sederhana dan lebih intuitif untuk dimodelkan menggunakan koordinat polar.
Sistem koordinat polar diperluas menjadi tiga dimensi dengan dua cara: sistem koordinat tabung dan bola.
Sejarah
Konsep sudut dan jari-jari sudah digunakan oleh manusia sejak zaman purba, paling tidak pada milenium pertama SM. Astronom dan astrolog Yunani, Hipparchus, (190–120 SM) menciptakan tabel fungsi chord dengan menyatakan panjang chord bagi setiap sudut, dan ada rujukan mengenai penggunaan koordinat polar olehnya untuk menentukan posisi bintang-bintang.[2] Dalam karyanya On Spirals, Archimedes menyatakan Archimedean spiral, suatu fungsi yang jari-jarinya tergantung dari sudut. Namun, karya-karya Yunani tidak berkembang sampai ke suatu sistem koordinat sepenuhnya.
Dari abad ke-8 M dan seterusnya, para astronom mengembangkan metode untuk menghitung arah ke Mekkah (kiblat)— dan jaraknya — dari semua lokasi di bumi.[3] Sejak abad ke-9 dan seterusnya, mereka menggunakan metode trigonometri bola dan proyeksi peta untuk menentukan jumlah ini secara akurat. Perhitungan pada dasarnya adalah konversi koordinat polar ekuator Mekkah (yaitu bujur dan lintang) ke koordinat kutubnya (yaitu kiblat dan jaraknya) relatif terhadap sistem yang meridian referensinya adalah lingkaran besar melalui lokasi tertentu, dan yang sumbu polarnya adalah garis melalui lokasi dan titik antipodal.[4]
Ada berbagai penjelasan tentang pengenalan koordinat polar sebagai bagian dari sistem koordinat formal. Sejarah lengkap dari subjek ini dijelaskan dalam Origin of Polar Coordinates Harvard profesor Julian Lowell Coolidge.[5] Grégoire de Saint-Vincent dan Bonaventura Cavalieri secara independen memperkenalkan konsep-konsep pada pertengahan abad ketujuh belas. Saint-Vincent menulis tentang mereka secara pribadi pada tahun 1625 dan menerbitkan karyanya pada tahun 1647, sementara Cavalieri menerbitkan karyanya pada tahun 1635 dengan versi koreksi yang muncul pada tahun 1653. Cavalieri pertama kali menggunakan koordinat kutub untuk memecahkan masalah yang berkaitan dengan luas di dalam spiral Archimedean. Blaise Pascal kemudian menggunakan koordinat polar untuk menghitung panjang busur parabola.
Dalam Method of Fluxions (ditulis 1671, diterbitkan 1736), Sir Isaac Newton memeriksa transformasi antara koordinat kutub, yang ia sebut sebagai "Cara Ketujuh; Untuk Spiral".[6] Dalam jurnal Acta Eruditorum (1691), Jacob Bernoulli menggunakan sistem dengan titik pada garis, yang masing-masing disebut polar dan sumbu polar . Koordinat ditentukan oleh jarak dari kutub dan sudut dari sumbu polar . Pekerjaan Bernoulli diperluas untuk menemukan jari-jari kelengkungan.
Istilah sebenarnya koordinat polar telah dikaitkan dengan Gregorio Fontana dan digunakan oleh penulis Italia abad ke-18. Istilah ini muncul dalam Inggris dalam terjemahan George Peacock tahun 1816 dari terjemahan Lacroix Diferensial dan Integral Kalkulus.[7][8] Alexis Clairaut adalah orang pertama yang memikirkan koordinat kutub dalam tiga dimensi, dan Leonhard Euler adalah orang pertama yang benar-benar mengembangkannya.[5]
Kaidah
Koordinat radial sering dilambangkan dengan r, dan koordinat angular dilambangkan dengan φ, θ, atau t. Koordinat angular ditetapkan sebagai φ oleh standar ISO 31-11.
Sudut dalam notasi polar biasanya dinyatakan dalam derajat atau radian (2π rad sama dengan to 360°). Derajat biasanya digunakan dalam navigasi, surveying, dan banyak bidang, sementara radian lebih umum dalam matematika dan fisika.[9]
Dalam banyak konteks, suatu koordinat angular positif berarti sudut φ diukur berlawanan dengan jarum jam dari aksis.
Dalam literatur matematika, aksis polar sering digambar horizontal dan mengarah ke kanan.
Konversi dari atau ke koordinat Kartesius
Koordinat polar r dan φ dapat dikonversi ke dalam sistem koordinat Kartesius x dan y menggunakan fungsi trigonometri sinus dan kosinus:
Koordinat Kartesian x dan y dapat dikonversi ke dalam koordinat polar r dan φ dengan r ≥ 0 dan φ dalam interval (−π, π] dengan:[10]
- (sebagaimana dalam teorema Pythagoras atau Euclidean norm), dan
- ,
di mana atan2 merupakan variasi umum pada fungsi arctangent yang didefinisikan sebagai
Nilai φ di atas adalah principal value dari fungsi bilangan kompleks arg yang diterapkan pada x+iy. Suatu sudut dalam rentang [0, 2π) dapat diperoleh dengan menambahkan 2π pada nilai sudut itu jika nilainya negatif.
Lihat pula
Referensi
- General
- Adams, Robert; Christopher Essex (2013). Calculus: a complete course (edisi ke-Eighth). Pearson Canada Inc. ISBN 978-0-321-78107-9.
- Anton, Howard; Irl Bivens; Stephen Davis (2002). Calculus (edisi ke-Seventh). Anton Textbooks, Inc. ISBN 0-471-38157-8.
- Finney, Ross; George Thomas; Franklin Demana; Bert Waits (June 1994). Calculus: Graphical, Numerical, Algebraic (edisi ke-Single Variable Version). Addison-Wesley Publishing Co. ISBN 0-201-55478-X.
- Specific
- ^ Brown, Richard G. (1997). Andrew M. Gleason, ed. Advanced Mathematics: Precalculus with Discrete Mathematics and Data Analysis. Evanston, Illinois: McDougal Littell. ISBN 0-395-77114-5.
- ^ Friendly, Michael. "Milestones in the History of Thematic Cartography, Statistical Graphics, and Data Visualization". Diakses tanggal 2006-09-10.
- ^ King, David A. (2005). The Sacred Geography of Islam. p.166. In Koetsier, Teun; Luc, Bergmans, ed. (2005). Mathematics and the Divine: A Historical Study. Amsterdam: Elsevier. hlm. 162–78. ISBN 0-444-50328-5..
- ^ King (2005, p. 169). Perhitungannya seakurat yang dapat dicapai di bawah batasan yang diberlakukan oleh asumsi mereka bahwa Bumi adalah bola yang sempurna.
- ^ a b Coolidge, Julian (1952). "The Origin of Polar Coordinates". American Mathematical Monthly. Mathematical Association of America. 59 (2): 78–85. doi:10.2307/2307104. JSTOR 2307104.
- ^ Boyer, C. B. (1949). "Newton as an Originator of Polar Coordinates". American Mathematical Monthly. Mathematical Association of America. 56 (2): 73–78. doi:10.2307/2306162. JSTOR 2306162.
- ^ Miller, Jeff. "Earliest Known Uses of Some of the Words of Mathematics". Diakses tanggal 2006-09-10.
- ^ Smith, David Eugene (1925). History of Mathematics, Vol II. Boston: Ginn and Co. hlm. 324.
- ^ Serway, Raymond A. (2005). Principles of Physics. Brooks/Cole—Thomson Learning. ISBN 0-534-49143-X.
- ^ Torrence, Bruce Follett; Eve Torrence (1999). The Student's Introduction to Mathematica. Cambridge University Press. ISBN 0-521-59461-8.
Pranala luar
- Hazewinkel, Michiel, ed. (2001) [1994], "Polar coordinates", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
- Graphing Software di Curlie (dari DMOZ)
- Coordinate Converter — converts between polar, Cartesian and spherical coordinates
- Polar Coordinate System Dynamic Demo