Kubus

bangun ruang 3 dimensi
Revisi sejak 8 Januari 2023 19.40 oleh 114.142.168.2 (bicara) (Link dari artikel sudah diupdate.)

Dalam geometri, kubusec[1] adalah bangun ruang tiga dimensi yang dibatasi oleh enam bidang sisi yang kongruen berbentuk bujur sangkar. Kubus memiliki 6 sisi, 12 rusuk, dan 8 titik sudut. Kubus juga disebut dengan bidang enam beraturan, selain itu kubus juga merupakan bentuk khusus dalam prisma segi empat, [1].

Kubus
Kubus berbentuk Hexahedron
JenisPadat platonis
Muka6
Rusuk12
titik sudut8
Konfigurasi titik sudutV 3.3.3.3
Simbol Wythoff3
Simbol Schläfli{4,3}
Diagram Coxeter
Grup simetriOh, B3, [4,3], (* 432)
Sudut dihedral (derajat)90°
Sifat-sifatreguler, cembung zonohedron
Jaring
Net of a cube
Kubus dalam 3D

Proyeksi ortogonal

Kubus memiliki empat khusus proyeksi orthogonal , berpusat, pada titik, tepi, wajah dan normal nya angka vertex . Yang pertama dan ketiga sesuai dengan Diagram Coxeter A2 dan B2

Proyeksi ortogonal
Dipusatkan oleh Wajah Vertex
Diagram Coxeter B2
 
A2
 
Projective
symmetry
[4] [6]
Tilted views    

Ubin bulat

Kubus juga dapat direpresentasikan sebagai ubin bola, dan diproyeksikan ke pesawat melalui proyeksi stereografi. Proyeksi ini konformal, menjaga sudut tetapi bukan area atau panjang. Garis lurus pada bola diproyeksikan sebagai busur melingkar di pesawat.

   
Proyeksi ortografis Proyeksi stereografi

Kordinat kartesius

Untuk sebuah kubus yang berpusat di titik asal, dengan tepi sejajar dengan sumbu dan dengan panjang tepi 2, koordinat kartesius dari simpul adalah

(±1, ±1, ±1)

sedangkan interior terdiri dari semua titik (x0, x1, x2) with −1 < xi < 1 for all i.

Persamaan dalam

Dalam geometri analitik , permukaan kubus dengan pusat (x0, y0, z0) dan panjang tepi 2a adalah lokus semua titik (x, y, z) sedemikian rupa sehingga

 

Sebuah kubus juga dapat dianggap sebagai kasus pembatas superellipsoid 3D karena ketiga eksponen mendekati tak terhingga.

Rumus

Bila variabel S adalah panjang rusuk kubus, maka:

Luas permukaan

 

Volume

 

Diagonal sisi

 

Diagonal sisi seluruhnya

 

Diagonal ruang

 

Diagonal ruang seluruhnya

 

Luas bidang diagonal

 

Luas bidang diagonal seluruhnya

 

Tunjuk ruang

Untuk kubus yang bulatan pembatasnya memiliki jari-jari R, dan untuk titik tertentu dalam ruang 3-dimensi dengan jarak di dari delapan simpul kubus, kita memiliki:[2]

 

Menggandakan kubus

Menggandakan kubus, atau masalah Delian, adalah masalah yang ditimbulkan oleh ahli matematika Yunani kuno hanya menggunakan kompas dan penggaris-sejajar untuk memulai dengan panjang tepi kubus yang diberikan dan untuk membangun panjang tepi kubus dengan dua kali lipat volume kubus asli. Mereka tidak dapat menyelesaikan masalah ini, dan pada tahun 1837 Pierre Wantzel membuktikannya tidak mungkin karena akar pangkat dua bukanlah angka yang dapat dibangun.

Pewarnaan dan simetri yang seragam

 
Pohon simetri oktahedral

Kubus memiliki tiga warna yang seragam, dinamai dengan warna wajah persegi di sekitar setiap titik: 111, 112, 123.

Kubus memiliki empat kelas simetri, yang dapat diwakili oleh pewarnaan verteks-transitif wajah. Simetri oktahedral tertinggi Oh memiliki semua wajah dengan warna yang sama. Dihedral simetri D4h berasal dari kubus menjadi prisma, dengan keempat sisinya menjadi warna yang sama. Himpunan bagian prismatik D2d memiliki warna yang sama dengan yang sebelumnya dan D2h memiliki warna bergantian untuk sisinya dengan total tiga warna, dipasangkan oleh sisi yang berlawanan. Setiap bentuk simetri memiliki Simbol Wythoff yang berbeda.

Nama Heksahedron biasa Prisma persegi Trapesium persegi panjang Balok Rhombic
prisma
Trigonal
trapezohedron
Coxeter
diagram
                                   
Schläfli
symbol
{4,3} {4}×{ }
rr{4,2}
s2{2,4} { }3
tr{2,2}
{ }×2{ }
Wythoff
symbol
3 | 4 2 4 2 | 2 2 2 2 |
Symmetry Oh
[4,3]
(*432)
D4h
[4,2]
(*422)
D2d
[4,2+]
(2*2)
D2h
[2,2]
(*222)
D3d
[6,2+]
(2*3)
Symmetry
order
24 16 8 8 12
Image
(uniform
coloring)
 
(111)
 
(112)
 
(112)
 
(123)
 
(112)
 
(111), (112)

Grafik

–⟩ Lihat pula:Paralelipiped

Kerangka kubus (simpul dan tepi) membentuk grafik , dengan 8 simpul, dan 12 tepi. Ini adalah kasus khusus dari grafik Kubushiper.[3] Ini adalah salah satu dari 5 grafik Platonis , masing-masing merupakan kerangka dari padatan Platoniknya.

Perpanjangan adalah grafik tiga dimensi k -ary Hamming , yang untuk k = 2 adalah grafik kubus. Grafik semacam ini muncul dalam teori pemrosesan paralel di komputer.

Referensi

  1. ^ Bahasa indonesia Kubus dari Bahasa prancis lama < Latin cubus < Greek κύβος (kubos) meaning "a cube, a die, vertebra". In turn from PIE *keu(b)-, "to bend, turn".
  2. ^ Park, Poo-Sung. "Regular polytope distances", Forum Geometricorum 16, 2016, 227-232. http://forumgeom.fau.edu/FG2016volume16/FG201627.pdf
  3. ^ (Inggris) Weisstein, Eric W. "Cubical graph". MathWorld. 

Pranala luar