Matematika
Matematika secara umum didefinisikan sebagai bidang ilmu yang mempelajari pola dari struktur, perubahan, dan ruang; secara informal, dapat pula disebut sebagai ilmu tentang bilangan dan angka'.
Di manakah letak semua konsep-konsep matematika, misalnya letak bilangan 1?
Banyak para pakar matematika yg juga mendalami filosofi di balik konsep-konsep matematika bersepakat bahwa semua konsep-konsep matematika secara universal terdapat di dalam pikiran setiap manusia.
Jadi yang dipelajari dalam matematika adalah berbagai simbol dan ekspresi untuk mengkomunikasikannya. Misalnya orang Jawa secara lisan memberi simbol bilangan 3 dengan mengatakan "Telu", sedangkan dalam bahasa Indonesia, bilangan tersebut disimbolkan melalui ucapan "Tiga". Inilah sebabnya, banyak pakar mengkelompokkan matematika dalam kelompok bahasa, atau lebih umum lagi dalam kelompok (alat) komunikasi, bukan sains.
Dalam pandangan formalis, matematika adalah penelaahan struktur abstrak yang didefinisikan secara aksioma dengan menggunakan logika simbolik dan notasi matematika; ada pula pandangan lain, misalnya yang dibahas dalam filosofi matematika.
Matematika ialah ilmu dasar yang mendasari ilmu pengetahuan lain, kita ingat jaman-jaman sebelum masehi, dimana pada jaman mesir kuno ilmu aritmatika digunakan untuk membuat piramida, digunakan untuk menentukan waktu turun hujan, Struktur spesifik yang diselidiki oleh matematikawan sering kali berasal dari ilmu pengetahuan alam, dan sangat umum di fisika, tetapi matematikawan juga mendefinisikan dan menyelidiki struktur internal dalam matematika itu sendiri, misalnya, untuk menggeneralisasikan teori bagi beberapa sub-bidang, atau alat membantu untuk perhitungan biasa. Akhirnya, banyak matematikawan belajar bidang yang dilakukan mereka untuk sebab estetis saja, melihat ilmu pasti sebagai bentuk seni daripada sebagai ilmu praktis atau terapan.
Ikhtisar dan sejarah matematika
Untuk lebih jelasnya lihat pada artikel sejarah matematika .
Kata "matematika" berasal dari kata μάθημα(máthema) dalam bahasa Yunani yang diartikan sebagai "sains, ilmu pengetahuan, atau belajar" juga μαθηματικός (mathematikós) yang diartikan sebagai "suka belajar".
Disiplin utama dalam matematika didasarkan pada kebutuhan perhitungan dalam perdagangan, pengukuran tanah dan memprediksi peristiwa dalam astronomi. Ketiga kebutuhan ini secara umum berkaitan dengan ketiga pembagian umum bidang matematika: studi tentang struktur, ruang dan perubahan.
Pelajaran tentang struktur dimulai dengan bilangan, pertama dan yang sangat umum adalah bilangan natural dan bilangan bulat dan operasi arimetikanya, yang semuanya itu dijabarkan dalam aljabar dasar. Sifat bilangan bulat yang lebih mendalam dipelajari dalam teori bilangan.
Investigasi metode-metode untuk memecahkan persamaan matematika dipelajari dalam aljabar abstrak, yang antara lain, mempelajari tentang ring dan field, struktur yang menggeneralisasi sifat-sifat yang umumnya dimiliki bilangan. Konsep vektor, digeneralisasi menjadi vektor ruang dipelajari dalam aljabar linier, yang termasuk dalam dua cabang: struktur dan ruang.
Ilmu tentang ruang berawal dari geometri, yaitu geometri Euclid dan trigonometri dari ruang tiga dimensi (yang juga dapat diterapkan ke dimensi lainnya), kemudian belakangan juga digeneralisasi ke geometri Non-euclid yang memainkan peran sentral dalam teori relativitas umum. Beberapa permasalahan rumit tentang konstruksi kompas dan penggaris akhirnya diselesaikan dalam teori Galois.
Bidang ilmu modern tentang geometri diferensial dan geometri aljabar menggeneralisasikan geometri ke beberapa arah:: geometri diferensial menekankan pada konsep fungsi, buntelan, derivatif, smoothness dan arah, sementara dalam geometri aljabar, objek-objek geometris digambarkan dalam bentuk sekumpulan persamaan polinomial. Teori grup mempelajari konsep simetri secara abstrak dan menyediakan kaitan antara studi ruang dan struktur. Topologi menghubungkan studi ruang dengan studi perubahan dengan berfokus pada konsep kontinuitas.
Mengerti dan mendeskripsikan perubahan pada kuantitas yang dapat dihitung adalah suatu yang biasa dalam ilmu pengetahuan alam, dan kalkulus dibangun sebagai alat untuk tujauan tersebut. Konsep utama yang digunakan untuk menjelaskan perubahan variabel adalah fungsi. Banyak permasalahan yang berujung secara alamiah kepada hubungan antara kuantitas dan laju perubahannya, dan metoda untuk memecahkan masalah ini adalah topik dari persamaan differensial.
Untuk merepresentasikan kuantitas yang kontinu digunakanlah bilangan riil, dan studi mendetail dari sifat-sifatnya dan sifat fungsi nilai riil dikenal sebagai analisis riil. Untuk beberapa alasan, amat tepat untuk menyamaratakan bilangan kompleks yang dipelajari dalam analisis kompleks. Analisis fungsional memfokuskan perhatian pada (secara khas dimensi tak terbatas) ruang fungsi, meletakkan dasar untuk mekanika kuantum di antara banyak hal lainnya.
Banyak fenomena di alam bisa dideskripsikan dengan sistem dinamis dan teori chaos menghadapi fakta yang banyak dari sistem-sistem itu belum memperlihatkan jalan ketentuan yang tak dapat diperkirakan.
Agar menjelaskan dan menyelidiki dasar matematika, bidang teori pasti, logika matematika dan teori model dikembangkan.
Saat pertama kali komputer disusun, beberapa konsep teori yang penting dibentuk oleh matematikawan, menimbulkan bidang teori komputabilitas, teori kompleksitas komputasional, teori informasi dan teori informasi algoritma. Kini banyak pertanyaan-pertanyaan itu diselidiki dalam ilmu komputer teoritis. Matematika diskret ialah nama umum untuk bidang-bidang penggunaan matematika dalam ilmu komputer.
Bidang-bidang penting dalam matematika terapan ialah statistik, yang menggunakan teori probabilitas sebagai alat dan memberikan deskripsi itu, analisis dan perkiraan fenomena dan digunakan dalam seluruh ilmu. Analisis bilangan menyelidiki teori yang secara tepat guna memecahkan bermacam masalah matematika secara bilangan pada komputer dan mengambil kekeliruan menyeluruh ke dalam laporan.
Topik dalam matematika
daftar bahasan dalam matematika dan subklasifikasinya dapat dilihat dalam daftar alfabet.
Daftar topik dan sub klasifikasi dibawah ini merupakan gambaran matematika secara umum.
- Kuantitas
Pada dasarnya, topik dan ide ini menyajikan ukuran jelas dari bilangan atau kumpulan, atau jalan untuk menemukan semacam ukuran.
- Bilangan – Bilangan dasar – Pi – Bilangan bulat – Bilangan rasional – Bilangan riil – Bilangan kompleks – Bilangan hiperkompleks – Quaternion – Oktonion – Sedenion – Bilangan hiperriil – Bilangan surreal – Bilangan urutan – Bilangan pokok – Bilangan P-adic – Rangkaian bilangan bulat – Konstanta matematika – Nama bilangan – Ketakterbatasan – Dasar
- Perubahan
Topik-topik berikut memberi cara untuk mengukur perubahan dalam fungsi matematika, dan perubahan antar angka.
- Aritmatika – Kalkulus – Kalkulus vektor – Analisis – Persamaan diferensial – Sistem dinamis dan teori chaos – Daftar fungsi
- Struktur
Cabang berikut mengukur besar dan simetri angka, dan berbagai konstruk.
- Aljabar abstrak – Teori bilangan – Geometri aljabar – Teori grup – Monoid – Analisis – Topologi – Aljabar linear – Teori grafik – Aljabar universal – Teori kategori – Teori urutan
- Ruang
Topik-topik berikut mengukur pendekatan visual kepada matematika dari topik lainnya.
- Topologi – Geometri – Trigonometri – Geometri Aljabar – Geometri turunan – Topologi turunan – Topologi aljabar – Algebra linear – Geometri fraktal
- Matematika diskrit
Topik dalam matematika diskrit berhadapan dengan cabang matematika dengan objek yang dapat mengambil harga tertentu dan terpisah.
- Kombinasi – Teori himpunan naif – Kemungkinan – Teori komputasi – Matematika terbatas – Kriptografi – Teori Gambar – Teori permainan
- Matematika terapan
Bidang-bidang dalam matematika terapan menggunakan pengetahuan matematika untuk mengatasi masalah dunia nyata.
- Mekanika – Analisa Numerik – Optimisasi – Probabilitas – Statistik – Matematika Finansial (keuangan) – Metoda Numerik
- Konjektur dan teori-teori yang terkenal
Teorema-teorema itu telah menarik matematikawan dan dan yang bukan matematikawan.
- Teori terakhir Fermat – Konjektur Goldbach – Konjektur Utama Kembar – Teorema ketidaklengkapan Gödel – Konjektur Poincaré – Argumen diagonal Cantor – Teorema empat warna – Lema Zorn – Identitas Euler – Konjektur Scholz – Tesis Church-Turing
- Teori dan konjektur penting
Di bawah ini adalah teori dan konjektur yang telah mengubah wajah matematika sepanjang sejarah.
- Hipotesis Riemann – Hipotesis Continuum – P=NP – Teori Pythagorean – Central limit theorem – Teordi dasar kalkulus – Teori dasar aljabar – Teori dasar aritmetik – Teori dasar geometri proyektif – klasifikasi teorema permukaan – Teori Gauss-Bonnet
- Dasar dan metode
Topik yang membahas pendekatan ke matematika dan pengaruh cara matematikawan mempelajari subyek mereka.
- Filsafat matematika – Intuisionisme matematika – Konstruktivisme matematika – Dasar matematika – Teori pasti – Logika simbol – Teori model – Teori kategori – Logika – Matematika kebalikan – Daftar simbol matematika
- Sejarah dunia para matematikawan
- Sejarah matematika – Garis waktu matematika – Matematikawan – Medali bidang – Hadiah Abel – Masalah Hadiah Milenium (Hadiah Matematika Clay) – International Mathematical Union – Pertndingan matematika – Pemikiran lateral – Kemampuan matematika dan masalah gender
- Matematika dan bidang lainnya
- Kejadian Kebetulan Matematika
- Peralatan Matematika
Dulu:
Sekarang:
Kutipan
Menurut metode aksiomatik, di mana sifat-sifat tertentu (sebaliknya tak dikenal) struktur diambil dan kemudian secara logis akibat dari itu kenudian secara logika diturunkan, Bertrand Russell berkata:
- "Matematika dapat didefinisikan sebagai subyek yang mana kita tidak pernah tau tentang apa yang sedang kita bicarakan, maupun apa yang tidak kita katakan benar".
Mungkin ini menjelaskan mengapa John von Neumann berkata suatu kali:
- "Dalam matematika Anda takkan memahami hal. Anda benar-benar mengambilnya dulu".
Tentang indahnya matematika, Bertrand Russell berkata dalam Study of Mathematics:
- "Matematika, sudah sepantasnya dipandang, tak hanya memiliki kebenaran, namun keindahan tertinggi – dingin dan cermat yang bagus, seperti pahatan itu, tanpa menarik setiap bagian sifat lemah kita, tanpa hiasan indah lukisan atau musik, masih murni sama sekali, dan kemampuan kesempurnaan keras seperti hanya seni terbesar dapat mempertunjukkan. Jiwa kesenangan yang sesungguhnya, keagungan, arti badan lebih daripada manusia, yang merupakan batu ujian keunggulan tertinggi, untuk ditemukan dalam matematika seperti tentu saja puisi".
Menguraikan simetri antara aspek penciptaan dan logika matematika, W.S. Anglin mengamati, dalam Mathematics and History:
- "Matematika bukanlah gerakan turun hati-hati jalan raya yang bebas, namun perjalanan dalam hutan belantara yang asing, di mana penjelajah sering kehilangan. Kekerasan akan menjadi tanda untuk sejarawan yang mana peta telah dibuat, dan penjelajah sesungguhnya telah pergi ke tempat lain".
Fakta penting: "Matematika bukan..."
Matematika bukan numerologi. Walau numerologi memakai aritmatika modular untuk mengurangi nama dan data pada bilangan digit tunggal, numerologi secara berubah memberikan emosi atau ciri pada bilangan tanpa mengacaukan untuk membuktikan penetapan dalam gaya logika. Matematika ialah mengenai gagasan pembuktian atau penyangkalan dalam gaya logika, namun numerologi tidak. Interaksi antara secara berubah emosi penentuan bilangan secara intuitif diperkirakan daripada yang telah diperhitungkan secara seksama.
Matematika bukan akuntansi. Meskipun perhitungan aritmetika sangat krusial dalam pekerjaan akuntansi, utamanya keduanya mengenai pembuktian yang mana perhitungan benar melalui sistem pemeriksaan ulang. Pembuktian atau penyangkalan hipotesis amat penting bagi matematikawan, namun tak sebanyak akuntan. Kelanjutan dalam matematika abstrak menyimpang pada akuntansi jika penemuan tak dapat diterapkan pada pembuktian efisiensi tata buku konkret.
Matematika bukan sains, karena kebenaran dalam matematika tidak memerlukan pengamatan empiris
Matematika bukan fisika, karena fisika adalah sains.
Bibliografi
- Courant, R. and H. Robbins, What Is Mathematics? (1941);
- Davis, Philip J. and Hersh, Reuben, The Mathematical Experience. Birkhäuser, Boston, Mass., 1980. Pengenalan lemah lembut pada dunia matematika.
- Gullberg, Jan, Mathematics--From the Birth of Numbers. W.W. Norton, 1996. Peninjauan luas matematika yang bersifat ensiklopedis yang disajikan secara jelas, bahasa sederhana.
- Hazewinkel, Michiel (ed.), Encyclopaedia of Mathematics. Kluwer Academic Publishers 2000. Versi terjemahan dan pengembangan ensiklopedi matematika Uni Soviet, dalam 10 (mahal) jilid, pekerjaan terlengkap dan berwenang yang tersedia. Juga pada buku sampul tipis dan CD-ROM.
- Kline, M., Mathematical Thought from Ancient to Modern Times (1973);
Pranala luar
- A mathematics, science, technology, and physics discussion forum
- Rusin, Dave: The Mathematical Atlas. Panduan perjalanan melalui bermacam cabang matematika modern.
- Kamus matematika oleh proyek NRICH pada Universitas Cambridge (Britania Raya), Connecting Mathematics
- Weisstein, Eric et al.: MathWorld: World of Mathematics. Ensiklopedia matematika online, berfokus pada matematika klasik.
- Planet Math. Ensiklopedi matematika online yang sedang dibangun, berfokus pada matematika modern. Menggunakan lisensi GFDL, memberikan pertukaran artikel dengan Wikipedia. Menggunakan markup TeX.
- Stefanov, Alexandre: Textbooks in Mathematics. Daftar buku pelajaran dan catatan kuliah online bebas dalam matematika.
- Bogomolny, Alexander: Interactive Mathematics Miscellany and Puzzles. Koleksi artikel besar dalam sejumlah topik matematika dengan lebih daripada 400 yang diilustrasikan dengan Java applets.
- Mathforge. News-blog dengan topik yang menyusun matematika populer pada fisika populer pada ilmu dan pendidikan komputer.
- Metamath. Situs dan bahasa, yang menyusun matematika dari dasarnya.