Nama-nama bilangan besar
Nama-nama bilangan besar mulai diciptakan sejak zaman dahulu bahkan sebelum zaman kejayaan islam pada abad ke-8. Archimedes, seorang matematikawan yunani kuno pada abad ke-3, menjadi salah satu pencetus awal nama untuk bilangan besar yang digunakannya untuk memperkirakan berapa butir pasir yang dibutuhkan untuk mengisi penuh alam semseta ini, yaitu sebanyak satu Psammites yang setara dengan.[1][2] Sejak saat itu, banyak bilangan-bilangan besar yang bermunculan terutama pada abad ke-19, saat Georg Cantor memperkenalkan kardinalitas, teori himpunan dan konsep tak terhingga, yang mengklasifikasikan tak terhingga menjadi beberapa tingkatan. Diikuti degan John Conway yang menciptakan sistem bilangan baru yang disebut bilangan surreal, sistem ini dapat merepresentasikan bilangan besar dan kecil yang jauh dari bilangan pada umumnya. Diikuti lagi dengan matematikawan lain seperti Donald Knuth yang menciptakan notasi anak panah Knuth untuk merepresentasikan bilangan yang jauh lebih besar.[3][4]
Bilangan yang lebih besar dari triliun jarang sekali digunakan dalam kehidupan sehari-hari, bilangan-bilangan tersebut biasanya ditulis dengan Notasi Ilmiah yang dapat dengan mudah untuk dibaca dan dipahami daripada menggunakan nama yang belum tentu diketahui oleh pembaca. Notasi ilmiah juga dapat mengurangi ambiguitas karena nama bilangan yang sama bisa diartikan sebagai dua bilangan yang berbeda tergantung penggunaan skalanya, seperti bilangan desiliun(skala pendek) yang biasanya ditulis sebagai . Meskipun begitu, kadangkala nama biangan besar dapat diterima dalam menyatakan jumlah yang ekstrim pada suatu pernyataan, misalnya: "Ada sekitar 7,1 oktiliun atom dalam tubuh manusia dewasa”.[5]
Penggunaan Slaka Pendek dan Skala Panjang
erdapat beberapa skala angka yang digunakan pada negara-negara di seluruh dunia untuk menentukan nama bilangan. Negara indonesia, Belanda, Australia, Arab Saudi, sebagian besar negara Afrika dan beberapa negara lain menggunakan Skala pendek. Prosedur pengambilan nama ini menggunakan bentuk yang berarti angka dengan kelipatan 1.000 diberi nama yang berbeda. Seperti bilangan kuadriliun yang merupakan kelipatan 1.000 dari bilangan dibawahnya, triliun. Sedangkan sebagian besar Negara Eropa, Negara-negara berbahasa Spanyol di Amerika latin menggunakan Skala panjang, yang mengambil nama bilangan setiap kelipatan 1.000.000. Skala ini mengambil bentuk , yang mana bilangan kuadriliun dalam skala ini merupakan kelipatan 1.000.000 dari bilangan triliun.
Selain dua skala tadi, ada beberapa negara yang menggunakan cara mereka sendiri untuk menentukan nama bilangan. Negara India, Bangladesh, Nepal dan pakistan menggunakan lakh atau lac dan crore didalam sistem penomoran weda dengan kelipatan 100. Negara Tiongkok, taiwan, jepang, Korea selatan dan utara menggunakan sistem angka Myiard dan memiliki nama khusus pada bilangan sampai . Selain itu masih ada banyak sekali sistem lain yang berbeda selain ini, tapi negara yang menggunakan sistem diluar itu sedikit jumlahnya.[6]
Daftar bilangan besar
Nama bilangan yang sama dapat memiliki nilai yang berbeda tergantung sistem bilangan yang digunakan pada suatu negara. [7][8][9][10][11][12][13] Bilangan yang terdapat di tabel ini sangat terbatas dikarenakan referensi yang kurang untuk membuktikan kebenaran dari nama-nama tersebut. Untuk bilangan yang lebih besar lagi lihat halaman asli: Daftar bilangan besar.
x | Nama bilangan | Skala pendek | Skala panjang |
---|---|---|---|
1 | Juta | 106 | 106 |
Juta (milliard) | 109 | ||
2 | miliar | 109 | 1012 |
3 | triliun | 1012 | 1018 |
4 | kuadriliun | 1015 | 1024 |
5 | kuintiliun | 1018 | 1030 |
6 | sekstiliun | 1021 | 1036 |
7 | septiliun | 1024 | 1042 |
8 | Oktiliun | 1027 | 1048 |
9 | Noniliun | 1030 | 1054 |
10 | Desiliun | 1033 | 1060 |
11 | Undesiliun | 1036 | 1066 |
12 | Duodesiliun | 1039 | 1072 |
13 | Tredesiliun | 1042 | 1078 |
14 | Kuatuordesiliun | 1045 | 1084 |
15 | Kuindesiliun | 1048 | 1090 |
16 | Seksdesiliun | 1051 | 1096 |
17 | Septendesiliun | 1054 | 10102 |
18 | Oktodesiliun | 1057 | 10108 |
19 | Novemdesiliun | 1060 | 10114 |
20 | Vigintiliun | 1063 | 10120 |
100 | Sentiliun | 10303 | 10600 |
Penggunaan nama-nama bilangan besar
Nama-nama bilangan besar relatif jarang digunakan dalam kehidupan sehari-hari. Namun dalam beberapa konteks, nama-nama itu banyak digunakan, sebagai contoh negara yang mengalami hiperinflasi seperti: Hungaria yang mencetak uang dengan nilai numerik tertinggi dalam sejarah senilai 1 sekstiliun pengő (1021 atau 1 miliar bilpengő) pada tahun 1946, Zimbabwe mencetak 100 triliun (1014) dolar Zimbabwe , yang pada saat dicetak bernilai sekitar USD$30.[14]
Nama-nama bilangan besar yang jumlahnya sangat banyak dan beragam ini memiliki eksistensi yang lemah, jarang ditemukan. Bahkan nama-nama yang paling umum dalam konteks ini seperti sekstiliun pun, jarang digunakan. Karena dalam konteks sains dan astronomi yang dimana bilangan besar sering muncul, nama-nama tersebut hampir selalu ditulis dengan notasi ilmiah. Dalam notasi ini, bilangan besar dinyatakan sebagai 10 dengan superskrip numerik, misalnya "Emisi sinar-X dari galaksi radio adalam joule." Bila bilangan seperti perlu diucapkan dengan kata-kata, bilangan tersebut cukup diucapkan sebagai "Sepuluh pangkat empat puluh lima." Dan ini jelas lebih mudah dan jelas dibandingkan dengan mengucapkan "quattuordecillion", yang sukar diucapkan ambigu karena memiliki arti yang berbeda dalam skala panjang dan skala pendek.
Bila suatu bilangan mewakili kuantitas dan bukan hitungan, awalan SI dapat digunakan. Dengan demikian "femtodetik", bukan "seperempat triliun detik" meskipun sering kali superskrip sepuluh digunakan sebagai pengganti awalan yang sangat tinggi atau sangat rendah. Dalam beberapa kasus, satuan khusus digunakan, seperti parsek dan tahun cahaya bagi para astronom atau fisikawan partikel. Meskipun demikian, bukan berarti nama bilangan-bilangan besar ini tidak menarik atau bahkan tidak digunakan, justru bilangan besar memiliki daya tarik tersendiri secara intelektual, dan memberi nama pada blangan tersebut merupakah salah satu cara orang mencoba mengonseptualisasikan untuk memahaminya.
Salah satu contoh paling awal dari diciptakannya nama bilangan besar adalah The Sand Reckoner (Sang penghitung pasir), di mana Archimedes memberikan sebuah sistem untuk menamai angka-angka besar. Untuk melakukan ini, ia menyebut angka 'myiard myiard' sebagai "satuan bilangan pertama" dan menyebut 108 itu sendiri sebagai "unit bilangan kedua". Kelipatan dari unit ini kemudian menjadi angka kedua, lantas unit bilangan kedua ini dikalikan dengan dirinya sendiri Yang menjadi "unit bilangan ketiga", yang kelipatan dari satuan unit kedua ini menjadi unit bilangan ketiga, dan seterusnya. Archimedes terus menamai angka dengan cara ini hingga berkali-kali lipat dari satuan angka ke-108, yaitu dan menyematkan konstruksi ini di dalam salinan lain dari dirinya sendiri untuk menghasilkan nama-nama bilangan hingga menjadi bilangan
Archimedes kemudian memperkirakan jumlah butiran pasir yang diperlukan untuk mengisi alam semesta yang diketahui, dan menemukan bahwa jumlahnya tidak lebih dari "seribu myiard angka ke-delapan" [butuh rujukan]
Sejak saat itu, banyak orang lain yang terlibat dalam pengejaran untuk mengkonseptualisasikan dan menamai angka-angka yang tidak memiliki eksistensi di luar imajinasi. Salah satu motivasi untuk pengejaran semacam itu adalah yang dikaitkan dengan penemu kata googol, yang yakin bahwa setiap angka yang terbatas "harus memiliki nama". Motivasi lain yang mungkin adalah persaingan antara siswa dalam kursus pemrograman komputer, di mana latihan yang umum dilakukan adalah menulis program untuk menghasilkan angka dalam bentuk kata-kata dalam bahasa Inggris.[butuh rujukan]
bahkan bilangan besar ini memiliki komunitas penggemarnya sendiri, lihat: googology.fandom.com.
Asal-usul "angka kamus standar"
Kata bymillion dan trimillion pertama kali dicatat pada tahun 1475 dalam manuskrip Jehan Adam. Selanjutnya, Nicolas Chuquet menulis buku 'Triparty en la science des nombres' yang tidak diterbitkan pada masa hidupnya. Namun, sebagian besar isinya disalin oleh Estienne de La Roche untuk bukunya yang diterbitkan pada tahun 1520, L'arismetique. Buku Chuquet berisi sebuah bagian di mana ia menunjukkan sebuah angka besar yang ditandai ke dalam kelompok-kelompok yang terdiri dari enam digit, dengan komentar sebagai berikut:
Ou qui veult le premier point peult signiffier million Le second point byllion Le tiers point tryllion Le quart quadrillion Le cinqe quyllion Le sixe sixlion Le sept.e sept.e septyllion Le huyte ottyllion Le neufe nonyllion et ainsi des ault's se plus oultre on vouloit precede.
(Atau jika Anda lebih suka, tanda pertama dapat menandakan million, tanda kedua byllion, tanda ketiga tryllion, tanda keempat quadrillion, tanda kelima quyillion, tanda keenam sixlion, tanda ketujuh septyllion, tanda kedelapan ottyllion, tanda kesembilan nonyllion, dan seterusnya dengan tanda lain yang Anda inginkan).
Adam dan Chuquet menggunakan skala panjang yang menghitung kekuatan angka satu juta. Artinya, "bymillion" menurut Adam (atau "bymillion" menurut Chuquet) berarti 1012, dan "trimillion" menurut Adam (atau "tryllion" menurut Chuquet) berarti 1018.[butuh rujukan]
Keluarga googol
Nama googol dan googolplex ditemukan oleh keponakan Edward Kasner, Milton Sirotta, dan diperkenalkan dalam buku Kasner dan Newman yang berjudul Mathematics and the Imagination[15] tahun 1940 pada kutipan berikut:
Nama "googol" ditemukan oleh seorang anak (keponakan Dr. Kasner yang berusia sembilan tahun) yang diminta untuk memikirkan sebuah nama untuk sebuah angka yang sangat besar, yaitu angka satu yang diikuti dengan seratus angka nol di belakangnya. Dia sangat yakin bahwa angka ini terbatas, dan oleh karena itu dia juga yakin bahwa angka ini harus memiliki nama. Pada saat yang sama dia menyarankan "googol", dia juga memberikan nama untuk bilangan yang lebih besar lagi: "googolplex." Googolplex jauh lebih besar daripada googol, tetapi masih terbatas, seperti yang ditunjukkan dengan cepat oleh penemu nama tersebut. Pertama kali disarankan bahwa googolplex harus berjumlah satu, diikuti dengan menulis angka nol sampai Anda merasa lelah. Ini adalah gambaran tentang apa yang akan terjadi jika seseorang mencoba menulis googolplex, namun setiap orang akan merasa lelah pada waktu yang berbeda dan tidak akan pernah bisa membuat Carnera menjadi ahli matematika yang lebih baik daripada Dr. Einstein, hanya karena ia memiliki daya tahan yang lebih baik. Maka, googolplex adalah bilangan terbatas tertentu, sama dengan 1 yang diikuti dengan angka nol sebanyak satu googol dibelakangnya.
Catatan: kata yang dicetak miring hanyalah tambahan dari penyunting untuk memperjelas kalimat yang diterjemahkan dari bahasa Inggris.
Nilai | Nama | Wewenang |
---|---|---|
Googol | Kanser dan Newman, Kamus (lihat di atas) | |
Googolplex | Kanser dan Newman, Kamus (lihat di atas) |
John Horton Conway dan Richard K. Guy[16] menyarankan agar N-plex digunakan sebagai nama untuk . Hal ini memunculkan nama googolplexplex sebagai . Conway dan Guy[17] telah mengusulkan agar N-minex digunakan sebagai nama untuk , sehingga memunculkan nama googolminex untuk kebalikan dari googolplex, yang dituliskan sebagai . Tapi tak satu pun dari nama-nama ini yang digunakan secara luas. Nama googol dan googolplex masing-masing menginspirasi nama perusahaan Internet Google dan kantor pusat perusahaannya, Googleplex.
Referensi
- ^ Archimedes, The Sand Reckoner 511 R U, by Ilan Vardi, accessed 28-II-2007.
- ^ A history of analysis. H. N. Jahnke. Providence, RI: American Mathematical Society. 2003. hlm. 22. ISBN 0-8218-2623-9. OCLC 51607350.
- ^ Knuth, Donald E. (1976). "Mathematics and Computer Science: Coping with Finiteness". Science. 194 (4271): 1235–1242. Bibcode:1976Sci...194.1235K. doi:10.1126/science.194.4271.1235. PMID 17797067.
- ^ R. L. Goodstein (Dec 1947). "Transfinite Ordinals in Recursive Number Theory". Journal of Symbolic Logic. 12 (4): 123–129. doi:10.2307/2266486. JSTOR 2266486.
- ^ "Questions and Answers - How many atoms are in the human body?". education.jlab.org. Diakses tanggal 2024-08-31.
- ^ "Long and short scales - Infogalactic: the planetary knowledge core". infogalactic.com. Diakses tanggal 2024-09-01.
- ^ None (2000). The American Heritage dictionary of the English language. Internet Archive. Boston : Houghton Mifflin. ISBN 978-0-395-82517-4.
- ^ "collinsdictionary". Perusahaan CollinsHarper.
- ^ "The Random House Dictionary of the English Language (2nd ed.)". The Random House Dictionary of the English Language (2nd ed.). Random House. 1987.
- ^ Press, Oxford University (1989). The Oxford English Dictionary (dalam bahasa Inggris). Clarendon Press. ISBN 978-0-19-861186-8.
- ^ "Oxford English Dictionary". Oxford University Press.
- ^ Brown, Lesley. The New Shorter Oxford English Dictionary ; Vol. 1 (dalam bahasa Inggris). Oxford University Press. ISBN 978-0-19-861271-1.
- ^ "cambridge dictionary". Kamus daring Universitas Cambridge.
- ^ "Zimbabwe rolls out Z$100tr note" (dalam bahasa Inggris). 2009-01-16. Diakses tanggal 2024-07-31.
- ^ Kasner, Edward; Newman, James (2013-04-22). Mathematics and the Imagination (dalam bahasa Inggris). Courier Corporation. ISBN 978-0-486-32027-4.
- ^ Conway, John H.; Guy, Richard (2012-12-06). The Book of Numbers (dalam bahasa Inggris). Springer Science & Business Media. ISBN 978-1-4612-4072-3.
- ^ Conway, John H.; Guy, Richard (2012-12-06). The Book of Numbers (dalam bahasa Inggris). Springer Science & Business Media. ISBN 978-1-4612-4072-3.