Fabrikasi data
Fabrikasi data adalah tindakan membuat data atau hasil penelitian yang palsu atau menyesatkan secara sengaja guna mendapatkan hasil yang diinginkan atau agar penelitian terlihat lebih signifikan.[1] Berbagai cara telah dilakukan untuk melancarkan fabrikasi data, seperti mengisi kuesioner palsu, mengarang angka atau statistik dalam laporan penelitian, dan membuat grafik atau tabel yang tidak didasarkan pada data yang sebenarnya. Fabrikasi data dapat terjadi dalam konteks studi sarjana maupun pascasarjana di mana seorang mahasiswa dengan sengaja memalsukan tugas laboratorium atau pekerjaan rumah mereka.[2]
Tindakan fabrikasi data merupakan pelanggaran etika penelitian yang serius karena memalsukan hasil dan dapat merusak integritas ilmiah serta kepercayaan publik terhadap penelitian. Untuk mencegah fabrikasi data, peneliti dapat bersikap transparan dan jujur tentang semua penelitian, data, analisis, dan kesimpulan.
Bentuk dan metode
Metode dan bentuk fabrikasi data dapat dilakukan melalui berbagai cara yang secara sengaja menciptakan atau memodifikasi data agar mendukung hasil penelitian yang diinginkan. Salah satu bentuk fabrikasi adalah pembuatan data palsu, yaitu menciptakan data yang sepenuhnya tidak berdasarkan eksperimen, survei, atau pengamatan nyata.[3] Contohnya, seorang peneliti mengisi kuesionernya sendiri seolah-olah berasal dari responden yang sebenarnya tidak pernah ada. Selain itu, fabrikasi data dapat berupa manipulasi data, di mana peneliti mengubah atau menghapus sebagian data untuk mendapatkan pola atau tren tertentu yang sesuai dengan hipotesis.[1] Contohnya adalah memodifikasi hasil statistik agar menunjukkan hubungan signifikan antara variabel yang sebenarnya tidak ada. Bentuk lainnya adalah dengan seleksi data secara bias atau biasa disebut petik ceri, yaitu hanya melaporkan data yang mendukung temuan yang diinginkan dan mengabaikan data yang bertentangan.[4] Praktik-praktik ini biasanya sulit dideteksi jika tidak ada mekanisme verifikasi yang ketat, dan sangat merugikan kredibilitas penelitian serta ilmu pengetahuan secara keseluruhan.
Dampak
Fabrikasi data membawa dampak negatif yang signifikan dan luas, baik bagi dunia ilmiah maupun masyarakat umum. Dalam konteks ilmiah, fabrikasi data dapat merusak integritas penelitian.[1] Data yang dipalsukan menghasilkan kesimpulan yang salah, sehingga kemudian dapat menyesatkan penelitian-penelitian selanjutnya yang mengacu pada data tersebut. Hal ini menghambat kemajuan ilmu pengetahuan dan berpotensi membuang sumber daya penelitian yang berharga. Lebih lanjut, fabrikasi data meruntuhkan kepercayaan publik terhadap sains dan para peneliti. Ketika masyarakat mengetahui bahwa penelitian bisa didasari oleh data yang tidak benar, kepercayaan terhadap hasil penelitian dan implikasinya, misalnya dalam pembuatan kebijakan publik, akan berkurang.[5]
Bagi peneliti yang melakukan fabrikasi data, konsekuensinya bisa sangat berat. Reputasi dan karier mereka bisa hancur karena sanksi akademik, kehilangan pekerjaan, bahkan tuntutan hukum.[6] Selain itu, fabrikasi data juga dapat berdampak pada pendanaan penelitian. Dalam bidang kedokteran dan kesehatan, dampak fabrikasi data bisa lebih fatal. Misalnya, fabrikasi data dalam uji klinis obat dapat membahayakan pasien jika obat yang disetujui ternyata tidak efektif atau bahkan berbahaya.[5][7]
Secara lebih luas, fabrikasi data dapat berdampak pada kebijakan publik. Jika kebijakan didasarkan pada data yang salah, maka kebijakan tersebut berpotensi tidak efektif atau bahkan menimbulkan masalah baru.[7] Oleh karena itu, pencegahan dan deteksi fabrikasi data sangat penting untuk menjaga integritas ilmu pengetahuan, kepercayaan publik, dan keberlangsungan pembangunan yang didasari oleh data dan penelitian yang valid.
Pendeteksian dan pencegahan
Contoh kasus
Referensi
- ^ a b c "Data Fabrication - an overview | ScienceDirect Topics". www.sciencedirect.com. Diakses tanggal 2024-12-16.
- ^ Else, Holly (2019-06-18). "What universities can learn from one of science's biggest frauds". Nature (dalam bahasa Inggris). 570 (7761): 287–288. doi:10.1038/d41586-019-01884-2.
- ^ Fanelli, Daniele (2009). "How Many Scientists Fabricate and Falsify Research? A Systematic Review and Meta-Analysis of Survey Data".
- ^ Shatz, Itamar. "Cherry Picking: When People Ignore Evidence that They Dislike". Effectiviology (dalam bahasa Inggris). Diakses tanggal 2024-12-16.
- ^ a b "Measuring Misconduct and Integrity". Routledge. 2009-03-27: 69–86. ISBN 978-0-429-24975-4.
- ^ Kingori, Patricia; Gerrets, René (2016-10). "Morals, morale and motivations in data fabrication: Medical research fieldworkers views and practices in two Sub-Saharan African contexts". Social Science & Medicine. 166: 150–159. doi:10.1016/j.socscimed.2016.08.019. ISSN 0277-9536.
- ^ a b Stacey, Anthony (2016). "Militating against data fabrication and falsification: A protocol of trias politica for business research". The Electronic Journal of Business Research Methods. 14 (2).