Wikipedia:Bak pasir
Dalam matematika dan ilmu komputer, sebuah algoritma adalah sebuah prosedur langkah-demi-langkah untuk penghitungan. Algoritma digunakan untuk penghitungan, pemrosesan data, dan penalaran otomatis.
Sebuah algoritma adalah sebuah metode efektif diekspresikan sebagai sebuah rangkaian terbatas [1] dari instruksi-instruksi yang telah didefinisikan [2] untuk menghitung sebuah fungsi. [3] Dimulai dari sebuah kondisi awal dan input awal (mungkin kosong), [4] instruksi-instruksi tersebut menjelaskan sebuah komputasi yang, bila dieksekusi, diproses lewat sejumlah urutan kondisi terbatas [5] yang terdefinisi dengan baik, yang pada akhirnya menghasilkan "keluaran" [6] dan berhenti di kondisi akhir. Transisi dari satu kondisi ke kondisi selanjutnya tidak harus deterministik; beberapa algoritma, dikenal dengan algoritma pengacakan, menggunakan masukan acak. [7]
Walaupun agorism-nya al-Khawarizmi dirujuk sebagai aturan-aturan melakukan aritmatika menggunakan bilangan Hindu-Arab dan solusi sistematis dan persamaan kuadrat, sebagian formalisasi yang nantinya menjadi algoritma modern dimulai dengan usaha untuk memecahkan permasalahan keputusan yang diajukan oleh David Hilbert di tahun 1928. Formalisasi selanjutnya dilihat sebagai usaha untuk menentukan "penghitungan efektif" [8] atau "metode efektif"; [9] formalisasi tersebut mengikutkan Godel-Herbrand-Kleene fungsi rekursif-nya Kurt Godel - Jacques Herbrand - Stephen Cole Kleene di tahun 1930, 1934, dan 1935, kalkulus lambda-nya Alonzo Church di tahun 1936, "Formulasi 1"-nya Emil Post di tahun 1936, dan Mesin Turing-nya Alan Turing di tahun 1936-7 dan 1939. Dari definisi formal dari algoritma di atas, berkaitan dengan konsep intuituf, masih tetap ada masalah yang menantang. [10]
Definisi Informal
Walau tidak ada definisi formal dari algoritma yang diterima secara umum, definisi informalnya bisa berarti "sekumpulan aturan yang secara tepat menentukan seurutan operasi". [11] yang mengikutkan semua program komputer, termasuk program yang tidak melakukan perhitungan numerik. Bagi beberapa orang, sebuah program hanyalah sebuah algoritma yang bakal berhenti. [12] Bagi yang lainnya, sebuah program hanyalah sebuah algoritma jika dia melakukan sejumlah langkah-langkah perhitungan.
Sebuah contoh tipikal algoritma adalah algoritma Euclid untuk menentukan bilangan pembagi terbesar dari dua integer; sebagai contohnya (masih ada contoh yang lain) dijelaskan dengan diagram alur di atas dan sebagai contoh di bagian nanti.
(Boolos & Jeffrey 1974, 1999) memberikan sebuah makna informal dari kata algoritma dalam persamaan berikut:
Tidak ada manusia yang dapat menulis begitu cepat, atau begitu lama, atau begitu kecil ("kecil, dan lebih kecil tanpa batas ... anda mungkin mencoba menulis di atas molekul, atom, elektron") untuk mencatat semua anggota dari kumpulan bilangan tak terbatas dengan menuliskan namanya, bergantian, dalam suatu notasi. Tapi manusia bisa melakukan sesuatu yang sama bergunanya, pada kasus kumpulan bilangan tak terbatas: Mereka dapat memberikan instruksi jelas untuk menentukan anggota ke-n dari set, untuk n terbatas acak. Instruksi tersebut diberikan secara eksplisit, dalam bentuk yang mana dapat diikuti oleh mesin penghitung, atau oleh manusia yang mampu melakukan hanya operasi-operasi dasar pada simbol-simbol. [13]
Istilah "bilangan tak-terbatas" artinya "bisa dihitung menggunakan integer bisa saja sampai tak terbatas." Maka, Boolos dan Jeffrey mengatakan bahwa sebuah algoritma berarti instruksi bagi sebuah proses yang "membuat" keluaran integer dari sebuah "masukan" acak integer yang, secara teori, bisa dipiliah dari 0 sampai tak-terbatas. Maka sebuah algoritma dapat berupa persamaan aljabar seperti y = m + n -- dua variabel masukan m dan n yang menghasikan keluaran y. Tapi berbagai penulis yang mencoba mendefinisikan persamaan tersebut mengatakan bahwa kata tersebut mengandung lebih dari itu, sesuatu yang berada pada (sebagai contoh penjumlahan):
- Instruksi rinci dan tepat (dalam bahasa yang dipahami oleh "komputer")
[14] untuk proses yang cepat, efisien, "baik" [15] yang menentukan "pergerakan" dari "komputer" (mesin atau manusia, dibekali dengan informasi dan kemampuan internal yang dibutuhkan) [16] untuk menemukan, dekode, dan kemudian mengolah masukan integer/simbol m dan n, simbol + dan = ... dan "secara efektif" [17] menghasilkan, dalam waktu yang "masuk akal", [18] keluaran integer y pada tempat dan format tertentu.
Konsep dari algoritma juga digunakan untuk mendefinisikan notasi dari desidabilitas. Notasi tersebut adalah pusat untuk menjelaskan bagaimana sistem formal berasal dari sejumlah kecil aksioma dan aturan. Dalam logika, waktu dari sebuah algoritma untuk selesai tidak dapat dihitung, karena tidak berelasi dengan dimensi fisik kita. Dari ketidakpastian tersebut, yang mengkarakteristikan pekerjaan yang berjalan, timbulah ketak-beradaan dari definisi algoritma yang sesuai dengan konkrit (pada tingkat tertentu) dan penggunaan secara abstrak dari istilah tersebut.
Formalisasi
Algoritma sangat penting bagi cara komputer mengolah data. Banyak program komputer mengandung algoritma memberikan rincian pada instruksi khusus yang komputer harus lakukan (dengan urutan tertentu) untuk menjalankan pekerjaan tertentu, seperti menghitung gaji karyawan atau mencetak kartu rapor siswa. Maka, sebuah algoritma bisa dianggap sebagai urutan operasi yang bisa disimulasikan oleh sebuah sistem Turing-lengkap. Penulis yang mendukung tesis ini termasuk Minsky (1967), Savage (1987), dan Gurevich (2000):
Minsky: "Tapi kita juga menjaga, dengan Turing ... bahwa setiap prosedur yang "secara alami" disebut efektif, bisa dinyatakan oleh mesin (sederhana). Walaupun tampaknya ekstrim, alasan tersebut ... sukar disanggah". [19]
Gurevich: "... argumen informal Turing untuk menyokong tesis ini membenarkan tesis yang lebih kuat: setiap algoritma bisa disimulasikan oleh sebuah mesin Turing ... menurut Savage [1987], sebuah algoritma adalah sebuah proses penghitungan yang ditentutkan oleh sebuah mesin Turing". [20]
Biasanya, bila sebuah algoritma dihubungkan dengan pengolahan informasi, data dibaca dari sumbar masukan, ditulis ke perangkat keluaran, dan/atau disimpan untuk pengolahan selanjutnya. Data simpanan dianggap sebagai bagian dari keadaan internal dari entitas yang melakukan algoritma. Pada prakteknya, keadaan tersebut disimpan satu atau lebih struktur data.
Untuk beberapa proses komputasi, algoritma harus ditentukan secara teliti: dijabarkan dengan cara ia bakal berlaku untuk semua kemungkinan yang dapat timbul. Yaitu, setiap langkah tambahan harus secara sistematis dihadapi, kasus-per-kasus; Kriteria bagi setiap kasus harus jelas (dan bisa dihitung).
Karena sebuah algoritma adalah kumpulan dari langkah-langkah yang tepat, urutan dari komputasi selalu penting bagi berfungsinya algoritma. Instruksi biasanya diasumsikan terdaftar secara eksplisit, dan dijelaskan dimulai "dari atas" dan terus "ke bawah", sebuah ide yang dijelaskan secara formal oleh alur kontrol
Pada saat ini, diskusi tentang formalisasi algoritma mengasumsikan premis dari pemrograman imperatif. Hal ini merupakan konsepsi umum, yang mencoba menjelaskan sebuah tugas dalam makna diskrit dan "mekanis". Keunikan dari konsepsi formalisasi algoritma adalah operasi penetapan, mengatur nilai dari sebuah variabel. Ia diturunkan dari intuisi "ingatan" sebagai kertas buram. Contoh operasi penetapan tersebut ada di bawah.
Untuk konsepsi yang lain dari apa yang membentuk sebuah algoritma lihat pemrograman fungsional dan pemrograman logika.
Menggambarkan algoritma
Algoritma dapat digambarkan dengan banyak notasi, termasuk bahasa alamiah, pseudokode, diagram alur, bahasa pemrograman atau tabel kontrol (diproses oleh penerjemah). Ekspresi bahasa alamiah terhadap algoritma condong lebih banyak dan rancu, dan jarang digunakan untuk algoritma yang kompleks dan teknis. Pseudokode, diagram alur dan tabel kontrol adalah cara yang terstruktur untuk menggambarkan algoritma yang mencegah banyaknya kerancuan pada penyataan-penyataan bahasa alamiah. Bahasa pemrograman ditujukan untuk mengekspresikan algoritma dalam sebuah bentuk yang dapat dieksekusi oleh komputer, tapi sering kali digunakan sebagai suatu cara untuk menentukan atau mendokumentasikan algoritma.
Ada banyak macam kemungkinan representasi dan seseorang dapat mengekspresikan sebuah program mesin Turing sebagai urutan dari tabel-tabel mesin (lihat lebih lanjut di mesin kondisi-terbatas, tabel transisi kondisi dan tabel kontrol), sebagai diagram alur (lihat lebih lanjut di diagram kondisi), atau sebagai bentuk kode mesin atau kode assembly dasar yang dikenal "kumpulan lipat empat" (lihat lebih lanjut di mesin Turing).
Representasi dari algoritma dapat dikelompokan ke dalam tiga tingkatan dari deskripsi mesin Turing: [21]
- 1 Deskripsi tingkat-tinggi
- "... ditujukan untuk menjelaskan algoritma, menghiraukan rincian implementasi. Pada tingkat ini kita tidak perlu menyebutkan bagaimana mesin mengatur perangkat rekam atau kepalanya."
- 2 Deskripsi implementasi
- "... digunakan untuk menjealskan cara mesin Turing menggunakan kepalanya dan cara menyimpan data. Pada tingkat ini kita tidak memberikan secara rinci kondisi atau fungsi transisi."
- 3 Deskripsi formal
- Lebih rinci, "tingkat paling rendah", menjelaskan "tabel kondisi" dari mesin Turing.
- Sebagai contoh dari algoritma sederhana "Jumlah m+n" dijelaskan dalam tiga tingkatan tersebut lihat contoh algoritma.
Implementasi
Kebanyakan algoritma ditujukan untuk diimplementasikan sebagai program komputer. Namun, algoritma juga diimplementasikan dengan tujuan lain, seperti dalam jaringan saraf biologis (sebagai contohnya, pada otak manusia implementasi aritmatika atau sebuah serangga yang melihat makanan), dana sirkuit elektris, atau dalam sebuah perangkat mekanis.
Algoritma komputer
Dalam sistem komputer, sebuah algoritma pada dasarnya adalah instansi dari logika ditulis dana perangkat lunak oleh pengembang perangkat lunak supaya efektif bagi komputer yang "ditargetkan" untuk mesin tertentu untuk menghasilkan keluaran dari masukan yang diberikan (kemungkinan nul).
Program "Elegan" (padat), "baik" (cepat): Pernyataan dari "sederhana dan elegan" muncul secara informal dalam buku Knuth dan dalam Chaitin:
- Knuth: "... kita menginginkan algoritma yang baik dalam definisi estetika sederhana. Salah satu kriteria ... adalah waktu yang dibutuhkan untuk berjalannya algoritma ... Kriteria yang lain adalah adaptasi dari algoritma ke komputer, kesederhaan dan elegan, dll"
- Chaitin: "... sebuah program adalah 'elegan, maksud saya adalah ia merupakan program terkecil untuk menghasilkan keluaran."
Chaitin membuka definisinya dengan: "Saya akan perlihatkan bahwa anda tidak dapat membuktikan sebuah program adalah 'elegan'" -- bukti tersebut akan menyelesaikan permasalahan perhentian (ibid).
Algoritma melawan fungsi yang dapat dihitung oleh algoritma: Untuk sebuah fungsi bisa ada beberapa algoritma. Hal ini benar, bahkan tanpa mengembangkan kumpulan instruksi yang ada bagi programmer. Rogers mengamati bahwa "Sangat ... penting untuk membedakan antara pernyataan algoritma, misalnya prosedur dan pernyataan fungsi yang dihitung oleh algoritma, misalnya pemetaan hasil dari prosedur. Fungsi yang sama bisa memiliki beberapa algoritma berbeda". [24]
Sayangnya ada kekurangan antara kebaikan (kecepatan) dan elegan (kepadatan) -- sebuah program yang elegan bisa melakukan lebih banyak langkah untuk menyelesaikan sebuah komputasi daripada yang kurang elegan. Sebuah contoh yang menggunakan algoritma Euclid bisa dilihat di bawah.
Komputer (dan komputor), model dari komputasi: Sebuah komputer (atau manusia "komputor" [25] ) adalah tipe mesin yang terbatas, sebuah "perangkat mekanis deterministik diskrit" [26] yang secara buta mengikuti instruksinya [27] model primitif dari Melzak dan Lambek [28] mengurangi gagasan menjadi empat elemen: (i) diskrit, lokasi yang bisa dibedakan, (ii) diskrit, penghitung yang tak bisa dibedakan [29] (iii) sebuah agen, dan (iv) sebuah daftar instruksi yang efektif relatif terhadap kemampuan dari agen. [30]
Simulasi dari sebuah algoritma: bahasa komputer (komputor): Knuth menganjurkan pembaca bahwa "cara terbaik untuk belajar algoritma dalah mencobanya ... langsung ambil pulpen dan kerta dan kerjakan contoh". [31] Lalu bagaimana dengan simulasi atau eksekusi yang sebenarnya? Programmer harus menerjemahkan algoritma ke dalam bahasa yang mana simulator/komputer/komputor dapat mengeksekusi secara efektif. Stone memberikan contoh dari hal ini: saat menghitung akar dari persamaan kuadrat si komputor harus tahu bagaimana mendapatkan akar kuadrat. Jika tidak maka supaya algoritma dapat efektif ia harus menyediakan sejumlah aturan untuk menekstrak akar kuadrat. [32]
Hal ini berarti programer haru tahu sebuah "bahasa" yang efektif relatif terhadap target pada agen komputasi (komputer/komputor).
Lalu model apa yang seharusnya digunakan untuk simulasi? Van Emde Boas mengamati "bahkan bila kita mendasari [[[Teori kompleksitas komputasi|teori kompleksitas]] dengan abstrak bukannya mesin kongkrit, kesembarangan dari pemilihan model masih tetap ada. Pada titik itulah mulainya pemikiran simulasi". [33] Bila kecepatan sedang dihitung, jumlah instruksi berpengaruh. Sebagai contohnya, subprogram dalam algoritma Euclid untuk menghitung sisa akan berjalan lebih cepat jika programmer memiliki instruksi "modulus" (pembagian) bukannya dengan pengurangan (atau lebih parah: hanya "penurunan").
Pemrograman terstuktur, struktur kanonikal: Menurut Tesis Church-Turing setiap algoritma bisa dihitung dengan sebuah model yang dikenal Turing lengkap, dan menurut demonstrasi Minsky kelengkapan Turing membutuhkan hanya empat tipe instruksi -- GOTO bersyarat, GOTO tak bersyarat, penetapan, HALT. Kemeny dan Kurtz mengamit bahwa saat penggunaan GOTO tak bersyarat yang "tak disiplin" dan IF-THEN GOTO bersyarat bisa menghasilkan "kode spageti" seorang programer bisa menulis program tersturktur menggunakan instruksi tersebut; di lain sisi "juga memungkinkan, dan tidak begitu sulit, untuk menulis sebuah program terstruktur yang buruk dalam sebuah bahasa terstruktur". [34] Tausworthe menambahkan tiga struktur kanon Bohm-Jacopini: [35] SEQUENCE, IF-THEN-ELSE, dan WHILE-DO, dengan dua lagi: DO-WHILE dan CASE. [36] Keuntungan dari program terstruktur adalah ia cocok dengan bukti kebenaran menggunakan induksi matematika. [37]
Simbol diagram alur [38]: Pembantu grafik yang disebug diagram alur memberikan suat cara untuk menjelaskan dan mendokumentasikan sebuah algoritma (dan program komputer). Seperti alur program dari mesin Minsky, sebuah diagram alur selalu mulat dari atas halaman dan terus ke bawah. Simbol utamanya hanya 4: arah panah memperlihatkan alur program, segi empat (SEQUENCE, GOTO), wajik (IF-THEN-ELSE), dan titik (OR). Struktur kanonikal Bohm-Jacopini dibuat dari bentuk-bentuk primitif tersebut. Sub-struktur bisa "bersarang" dalam segi empat hanya jika jalan keluar tunggal terjadi dari super-struktur. Simbol dan penggunaannya untuk membangun struktur kanonikal diperlihatkan dalam diagram.
Contoh
Contoh Algoritma
Salah satu dari algoritma sederhana adalah menemukan bilangan terbesar dalam sebuah daftar angka (tak berurut). Solusinya biasanya membutuhkan memeriksa setiap angka dalam daftar, tapi hanya sekali. Dari hal ini munculah algoritma sederhana, yang bisa dinyatakan dalam kalimat bahasa Indonesia deskripsi tingkat-tinggi, sebagai:
Deskripsi tingkat-tinggi:
- Asumsikan item pertama yang terbesar
- Periksa setiap item yang tersisa pada daftar dan jika lebih besar dari item yang ada sekarang, catat angka tersebut
- Item yang paling terakhir dicata adalah yang terbesar di daftar saat proses selesai.
Deskripsi (Quasi-)formal: Ditulis dalam kalmiat yang lebih dekat dengan bahasa tingkat-tinggi dari program komputer, berikut ini adalah kode formal dari algoritma dalam pseudokode atau kode pijin:
Algoritma LargestNumber Input: Daftar angka tidak kosong L. Output: Angka terbesar dalam daftar L.
largest ← L0 for each item in the list (Length(L)≥1), do if the item > largest, then largest ← the item return largest
- "←" adalah singkatan untuk "diubah menjadi". Misalnya, "terbesar ← item" artinya nilai dari terbesar diubah menjadi nilai dari item.
- "kembalikan" mengakhiri algoritma dan mengeluarkan nilai kembalian.
Algoritma Euclid
Algoritma Euclid muncul sebagai Proposisi II dalam Book VII ("Elementary Number Theory") dari Elements-nya. [39] Euclid mengajukan permasalahan: "Ambil dua angka bukan prima, untuk mencari bilangan pembagi terbesar". Dia menentukan "Sebuah angka [merupakan] besaran yang terdiri dari unit-unit": angka penghitung, integer positif kecuali 0. Dan "mengukur" adalah menempatkan ukuran panjang terkecil s dengan tepat (q kali) diantara ukuran terpanjang l sampai sisa r lebih kecil dari panjang terkecil s. [40] Dalam dunia modern, sisa r = l - q*s, q sebagai hasil bagi, atau sisa r adalah "modulus", bagian sisa-integer yang tersisa setelah pembagian. [41]
Supaya metode Euclid berhasil, panjang awalnya harus memenuhi dua kebutuhan: (i) panjangnya tidak 0, DAN (ii) hasil pengurangan hasil "lebih", sebuah tes harus menjamin bahwa bilangan terkecil dari dua angka adalah hasil pengurangan dari yang terbesar (cara lain, keduanya bisa sama sehingga pengurangan menghasilkan 0).
Pembuktian asli Euclid mengikutkan kebutuhan yang ketiga: kedua panjang bukanlah bilangan prima. Euclid menentukan hal ini supaya dia bisa membentuk sebuah bukti reductio ad absurdum bahwa dua pembagi dua angka adalah yang terbesar. [42] Walau algoritma Nicomachus sama dengan Euclid, bila kedua bilangan prima maka menghasilkan angka "1" untuk bilangan pembagi terbesar. Jadi untuk lebih jelasnya algoritma berikut adalah algoritma Nicomachus.
Contoh
Contoh dari 1599 dan 650:
Step 1 | 1599 = 650*2 + 299 |
Step 2 | 650 = 299*2 + 52 |
Step 3 | 299 = 52*5 + 39 |
Step 4 | 52 = 39*1 + 13 |
Step 5 | 39 = 13*3 + 0 |
Bahasa komputer untuk algoritma Euclid
Hanya beberapa tipe instruksi yang dibutuhkan untuk mengeksekusi algoritma -- beberapa tes logika (GOTO bersyarat), GOTO tak bersyarat, penetapan (penggantian), dan pengurangan.
- Sebuah lokasi disimbolkan dengan huruf besar, misalnya, S, A, dll.
- Kuantitas beragam (angka) dalam sebuah lokasi ditulis dengan huruf kecil dan (biasanya) dihubungkan dengan nama lokasi. Sebagai contohnya, lokasi L pada awal bisa mengandung angka l = 3009.
Program yang kurang elegan (inelegan) untuk algoritma Euclid
Algoritma berikut disebut sebagai versi Euclid dan Nichomachus 4-langkah-nya Knuth, tapi bukannya menggunakan pembagi untuk menentukan sisa ia menggunakan pengurangan berturut-turut dari panjang terkecil s dari sisa panjang r sampai r kurang dari s. Deskripsi tingkat-tinggi, diperlihatkan dengan tulisan tebal, diadaptasi dari Knuth 1973:2-4:
INPUT:
- 1 [Kedalam dua lokasi L dan S taruh angka l dan s yang merepresentasikan kedua panjang]: INPUT L, S
- 2 [Inisialisasi R: buat supaya sisa panjang r sama dengan panjang awal l] R ← L
E0: [Pastikan r ≥ s.]
- 3 [Pastikan angka terkecil dari kedua angka ada dalam S dan yang terbesar di R]: IF R > S THEN isi dari L adalah angka terbesar jadi lewati langkah 4, 5 dan 6: GOTO step 6 ELSE tukar isi R dan S.
- 4 L ← R (langkah pertama ini berlebih, tapi berguna untuk diskusi nanti).
- 5 R ← S
- 6 S ← L
E1: [Cari sisa]: Sampai sisa panjang r di R kurang dari panjang terkecil s pada S, kurangi angka s dalam S berulang kali dari sisa panjang r dalam R.
- 7 IF S > R THEN selesai mengukur jadi GOTO 10 ELSE ukur lagi,
- 8 R ← R - S
- 9 [Pengulangan-sisa]: GOTO 7.
E2: [Apakah sisa 0?]: APAKAH (i) pengukuran terakhir adalah sama dan sisa di R adalah 0 program dapat berhenti, ATAU (ii) algoritma harus terus jalan: hasil pengukuran meninggalkan sisa di R kurang dari angka pengukuran dalam S.
- 10 IF R = 0 maka selesai jadi GOTO langkah 15 ELSE lanjut ke langkah 11.
E3: [Interchange s dan r]: Sulitnya algoritma Euclid. Menggunakan sisa r untuk mengukur angka terkecil sebelumnya s:; L sebagai lokasi sementara.
- 11 L ← S
- 12 R ← S
- 13 S ← L
- 14 [Ulang proses pengukuran]: GOTO 7
OUTPUT:
- 15 [Selesai. S berisi faktor persekutuan terbesar]: PRINT S
DONE:
- 16 HALT, END, STOP.
Program elegan untuk algoritma Euclid
Versi algoritma Euclid berikut hanya membutuhkan 6 instruksi inti untuk melakukan 13 langkah pada solusi "inelegan"; parahnya, "inelegan" membutuhkan tipe instruksi lebih banyak. Diagram alur dari "elegan" bisa dilihat pada bagian atas artikel ini. Dalam bahasa Basic (tak terstruktur) langkahnya diberi nomor, dan instruksi LET [] = [] adalah instruksi penetapan disimbolkan dengan ←.
5 REM Algortima Euclid untuk faktor persekuturan terbesar 6 PRINT "Masukan dua integer besar dari 0" 10 INPUT A,B 20 IF B=0 THEN GOTO 80 30 IF A > B THEN GOTO 60 40 LET B=B-A 50 GOTO 20 60 LET A=A-B 70 GOTO 20 80 PRINT A 90 END
Bagaimana cara kerja "Elegan": Sebagai pengganti "pengulangan Euclid" luar, "Elegan" mengulang antara dua pengulangan, pengulangan A > B yang menghitung A ← A - B, dan pengualang B ≤ A yang menghitung B ← B - A. Ini bekerja karena, saat yang dikurang M lebih kecil pengurang S ( Selisih = pengurang - yang_di_kurang ), dikurang bisa menjadi s (panjang pengukuran yang baru) dan pengurang bisa menjadi r yang baru (panjang yang akan diukur); dengan kata lain "arti" dari pengurangan dibalik.
Menguji algoritma Euclid
Apakah algoritma berjalan seperti yang penulis inginkan? Beberapa kasus uji cukup menentukan fungsi inti. Sumber pertama [43] menggunakan 3009 dan 884. Knuth menyarankan 40902, 24140. Kasus menarik lainnya yaitu dua angka relatif prima 14157 dan 5950.
Tapi kasus pengecualian harus teridentifikasi dan diuji. Apakah "inelegan" berjalan benar saat R > S, S > R, R = S? Sama juga dengan "Elegan": B > A, A > B, A = B? (Semuanya benar). Apa yang terjadi bila salah satu bilangan nol, atau keduanya nol? ("Inelegan" terus berjalan pada kedua kasus; "elegan" terus berjalan saat A = 0.) Apa yang terjadi bila angka negatif dimasukan? Angka desimal? Bila angka masukan, misalnya domain dari fungsi yang dihitung oleh algoritma/prgoram, mengikutkan hanya integer positif termasuk 0, maka kegagalan pada nol mengindikasikan bahwa algoritma (dan program instansiasinya) adalah sebuah fungsi parsial bukannya fungsi total. Kegagalan yang terkenal karena istimewa adalah kegagalan roket Ariane V.
Bukti dari kebenaran program menggunakan induksi matematika: Knuth mendemonstrasikan penggunaan induksi matematika untuk versi "pengembangan" dari algoritma Euclid, dan dia mengajukan "metode umum yang digunakan untuk membuktikan validitas dari setiap algoritma." [44] Tausworthe mengajukan bahwa sebuah pengukuran dari kompleksitas dari sebuah program adalah panjang dari bukti kebenarannya. [45]
Menghitung dan meningkatkan algoritma Euclid
Elegan (kepadatan) lawan kebaikan (kecepatan): Dengan hanya 6 instruksi dasar, "Elegan" adalah jelas pemenang dibandingkan dengan instruksi "inelegan" yang 13. Namun, "Inelegan" lebih cepat (ia sampai pada HALT dengan langkah lebih sedikit). Analisis algoritma [46] mengindikasikan kenapa hal tersebut terjadi: "Elegan" melakukan pengujian kondisi dua kali disetiap pengulangan pengurangan, sementara "inelegan" hanya sekali. Bila algoritma (biasanya) membutuhkan banyak pengulangan, secara rata-rata lebih banyak waktu yang terbuang saat melakukan tes "B = 0?" yang hanya diperlukan saat sisa sudah dihitung.
Bisakah algoritma ditingkatkan?: Bila programmer sudah menilai sebuah program "cocok" dan "efektif" -- yaitu, ia menghitung fungsi yang ditujukan oleh penulisnya -- maka pertanyaannya menjadi, bisakah ditingkatkan?
Kepadatan dari "inelegan" bisa ditingkatkan dengan menghilangkan 5 langkah. Tapi Chaitin membuktikan bahwa memadatkan algoritma tidak bisa diotomatiskan dengan algoritma generalisasi; [47] tapi, ia bisa dilakukan secara heuristik, misalnya dengan pencarian menyeluruh (contohnya bisa ditemukan di berang-berang sibuk), coba dan gagal, kecerdasan, kedalaman, penggunaan penalaran induktif, dll. Bisa diamati bahwa langkah 4, 5, dan 6 dilang pada langkah 11, 12, dan 13. Pembandingan dengan "Elegan" menyediakan petunjuk langkah-langkah tersebut dengan langkah 2 dan 3 dapat dihilangkan. Hal ini mengurangi jumlah instruksi dasar dari 13 menjadi 8, yang membuatnya "lebih elegan" dari "Elegan" dengan 9 langkah.
Kecepatan "Elegan" bisa ditingkatkan dengan memindahkan tes B=0? keluar dari pengulangan. Perubahan ini memerlukan penambahan 3 instruksi (B=0?, A=0?, GOTO). Sekarang "Elegant" menghitung contoh-angka lebih cepat; untuk setiap angka pada A, B dan R, S hal ini selalu merupakan kasus yang membutuhkan analisis yang mendalam.
Analisis Algoritma
Sangat penting untuk mengetahui berapa banyak sumber tertentu (seperti waktu dan tempat penyimpanan) secara teoritis diperlukan untuk sebuah algoritma. Metode-metode telah dikembangkan untuk analisis algoritma untuk mendapatkan jawaban kuantitatif (estimasi); sebagai contohnya, algoritma pengurutan di atas memerlukan waktu O(n), menggunakan notasi O besar dengan n sebagai panjang deret (yang akan diurut). Setiap saat algoritma hanya perlu mengingat dua nilai: nilai terbesar yang ditemukan, dan posisinya sekarang dideretan input. Oleh karena itu dikatakan memiliki kebutuhan ruang O(1), jika ruang yang dibutuhkan untuk menyimpan angka masukan tidak dihitung, atau O(n) jika dihitung.
Algoritma berbeda mungkin menyelesaikan pekerjaan yang sama dengan kumpulan instruksi yang berbeda dengan waktu, ruang, atau 'usaha' lebih sedikit atau banyak dari yang lain. Sebagai contohnya, algoritma pencairan binari biasanya mengungguli pencarian berderet secara paksa bila digunakan untuk tabel pencarian pada deret terurut.
Formal lawan empiris
Analisis dan kajian algoritma adalah bidang dari ilmu komputer, dan biasanya dilakukan secara abstrak tanpa menggunakan bahasa pemrograman tertentu atau implementasi. Dalam artian, analisis algoritma mirup dengan bidang matematika lainnya yang mana fokus pada properti yang mendasari algoritma dan bukan pada implementasi tertentu. Biasanya pseudokode digunakan pada analisis karena merupakan representasi paling umum dan sederhana. Namun, pada akhirnya, kebanyakan algoritma diimplementasikan di perangkat keras / lunak tertentu dan efisiensi algoritmik mereka akhirnya diuji menggunakan kode yang sebenarnya. Untuk solusi dari sebuah masalah, efisiensi dari algoritma tertentu mungkin tidak terlalu berpengaruh (kecuali n sangat besar) tapi bagi algoritma yang dirancang untuk kecepatan interaktif, komersial, atau penggunaan ilmiah jangka panjang ia bisa saja kritikal. Meningkatkan n dari kecil ke n yang besar biasanya menunjukan ketakefisienan algoritma yang tidak berbahaya.
Pengujian empiris berguna karena bisa membuka interaksi tak terduga yang mempengaruhi performa. Benchmark bisa digunakan untuk membandingkan potensi kenaikan sebelum/sesudah dari algoritma setelah optimisasi program dilakukan.
Percepatan FFT
Untuk menggambarkan kemungkinan potensi peningkatan bahkan pada algoritma yang "sudah terkenal", inovasi penting terbaru, berkaitan dengan algoritma FFT (banyak digunakan di bidang pemrosesan gambar), bisa menurunkan waktu pemrosesan dengan faktor sebesar 10.000. Akibat dari percepatan ini membolehkan, sebagai contohnya, perangkat komputasi portabel (dan perangkat lainnya) menggunakan tenaga lebih sedikit [48]
Klasifikasi
Ada berbagai cara untuk mengklasifikasikan algoritma, tiap-tiapnya memiliki manfaatnya sendiri.
Dengan implementasi
Salah satu cara mengklasifikasikan algoritma yaitu dengan cara implementasi.
- Rekursi atau iterasi: Sebuah algoritma rekursi yaitu algoritma yang memanggil dirinya sendiri berulang kali sampai kondisi tertentu tercapai, yang merupakan metode umum bagi pemrograman fungsional.
Algoritma iteratif menggunakan konstruksi berulang seperti pengulangan dan terkadanga struktur data tambahan seperti tumpukan untuk menyelesaikan permasalahan. Beberapa permasalahan secara alami cocok dengan satu implementasi atau lainnya. Sebagai contoh, Menara Hanoi dikenal dengan implementasi rekursif. Setiap versi rekursif memiliki kesamaan (tapi bisa lebih atau kurang kompleks) dengan versi iteratif, dan sebaliknya.
- Logical: Sebuah algoritma bisa dilihat sebagai logika deduksi terkontrol. Pernyataan ini diekspresikan sebagai: Algoritma = logika + kontrol. [49]
Komponen logika mengekspresikan aksioma yang bisa digunakan dalam komputasi dan komponen kontrol menentukan cara deduksi digunakan pada aksioma. Ini merupakan dasar dari paradigma pemrograman logika. Dalam bahasa pemrograman logika murni komponen kontrol adalah tetap dan algoritma ditentukan dengan memberikan hanya komponen logikanya. Daya tarik dari pendekatan ini adalah semantik elegan: sebuah perubahan dalam aksioma memiliki perubahan dalam algortima.
- Serial atau paralel atau terdistribusi: Algoritma biasanya dibicarakan dengan asumsi bahwa komputer menjalankan satu instruksi algoritma setiap waktu.
Komputer tersebut terkadang disebut dengan komputer serial. Rancangan algoritma untuk lingkungan tersebut disebut dengan algoritma serial, terbalik dengan algoritma paralel atau algoritma terdistribusi. Algoritma paralel memanfaatkan arsitektur komputer yang mana beberapa prosesor bisa mengerjakan masalah di waktu yang sama, selain itu algoritma terdistribusi memanfaatkan banyak mesin yang terhubung dengan jaringan. Algoritma paralel atau terdistribusi membagi permasalahan menjadi banyak sub-masalah simetris atau asimetris dan mengumpulkan hasilnya kembali. Konsumsi sumber pada algoritma tersebut tidak hanya perputaran prosesor disetiap prosesor tapi juga daya komunikasi antara prosesor. Algoritma pengurutan bisa diparalelkan secara efisien, tapi biaya komunikasinya sangat mahal. Algoritma iteratif secara umum bisa diparalelkan. Beberapa permasalahan tidak ada algoritma paralelnya, dan disebut dengan permasalahan serial lahiriah.
- Deterministik atau non-deterministik: Algoritma deterministik menyelesaikan masalah dengan keputusan yang tepat disetiap langkah dari algoritama sedangkan algoritma non-deterministik menyelesaikan masalah lewat penerkaan walaupun penerkaan biasanya lebih akurat dengan menggunakan heuristik.
- Tepat atau perkiraan: Bila banyak algoritma sampai pada solusi yang tepat, algoritma perkiraan mencari sebuah perkiraan yang terdekat dengan solusi benarnya.
Perkiraan bisa menggunakan baik strategi deterministik atau acak. Algoritma seperti itu memiliki nilai guna untuk banyak permasalahan sulit.
- Algoritma quantum berjalan di model realistik dari komputasi quantum.
Istilah ini biasanya digunakan untuk algoritma yang tampak pada dasarnya quantum, atau menggunakan beberapa fitur penting komputasi quantum seperti superposisi quantum atau belitan quantum.
Paradigma secara rancangan
Cara lain mengklasifikasikan algoritma adalah dengan metodologi rancangannya atau paradigma. Ada sejumlah paradigma, tiap-tiapnya berbeda dari yang lain. Lebih lanjut, setiap kategori tersebut mengikutkan banyak tipe algoritma yang berbeda. BEberapa paradigma umum yang sering ditemukan termasuk:
- paksa atau pencarian mendalam.
Ini merupakan metoda naif mencoba setiap kemungkinan solusi untuk melihat yang terbaik. [50]
- Membagi dan menaklukan. Algoritma bagi dan takluk secara berulang mengurangi instansi jumlah masalah menjadi satu atau lebih kecil instasi masalah yang sama (biasanya secara rekursif) sampai instansi cukup kecil diselesaikan dengan mudah.
Salah satu contoh bagi dan takluk adalah pengurutan gabung. Pengurutan dapat dilakukan disetiap segmen data setelah membagi data menjadi segmen-segmen dan urutan seluruh data bisa didapat pada fase takluk dengan menggabungkan segmen-segmen. Variasi sederhana dari bagi-dan-takluk disebut algoritma kurang dan takluk, yang menyelesaikan sub-masalah yang sama dan menggunakan solusi dari sub-masalah tersebut untuk menyelesaikan masalah yang lebih besar. Bagi dan takluk membagi permasalahan menjadi banyak sub-masalah dan sehingga tahap takluk lebih kompleks daripada algoritma kurang-dan-taklukan. Sebuah contoh dari algoritma kurang-dan-taklukan adalah algoritma pencarian binari.
- Pemrograman dinamis. Bila sebuah masalah memperlihatkan substruktur optimal, artinya solusi optimal terhadap sebuah masalah bisa direkonstruksi dari solusi optimal ke sub-masalah, dan submasalah tumpang-tindih, artinya sub-masalah yang sama digunakan untuk menyelesaikan banyak instasi masalah berbeda, pendekatan tercepat disebut pemrograman dinamis menghindari penghitungan solusi yang telah dikomputasi. Sebagai contoh, algoritma Floyd-Warshall, jalan terpendek ke tujuan dari sebuah vertex dalam grafik berbobot bisa ditemukan dengan menggunakan jalan terpendek ke tujuan dari semua simpul yang berdekatan. Pemrograman dinamis dan memoisasi berpadanan. Perbedaan utama antara pemrograman dinamis dan bagi-dan-taklukan adalah submasalah kurang lebih independen dalam bagi-dan-taklukan, sementara submasalah tumpang tindik dalam pemrograman dinamis. Perbedaaan antara pemrograman dinamis dan rekursi langsung adalah dalam 'caching' atau memoisasi dari pemanggialan rekursif. Saat submasalah independen dan tidak ada pengulangan, memoisasi tidak membantu sama sekali; makanya pemrograman dinamis bukalanh solusi untuk semua permasalahan kompleks. Dengan menggunakan memoisasi atau tabel dari submasalah yang telah diselesaikan, pemrograman dinamis mengurangi eksponensial dari banyak permasalahan menjadi kompleksitas polinomial.
- Metoda rakus. Sebuah algoritma rakus mirip dengan algoritma pemrograman dinamis, tapi perbedaannya adalah solusi dari submasalah tidak harus diketahui pada setiap tahap; melainkan pilihan yang "rakus" bisa dibuat dengan melihat apa yang terbaik untuk saat tersebut. Metoda rakus mengembangkan solusi dengan kemungkinan keputusan yang terbaik (bukan dengan keputusan yang ada) pada tahap algoritmis berdasarkan optimasi lokal yang ada sekarang dan keputusan yang terbaik (bukan semua kemungkinan keputusan) yang dibuat pada langkah sebelumnya. Algoritma ini tidak terlalu mendalam, dan tidak memberikan jawaban yang akurat terhadap banyak permasalahan. Tapi bila ia bekerja, ia menjadi metoda yang paling cepat. Algoritma rakus paling terkenal adalah menemukan rentang pohon minimal seperti pada Pohon Huffman, Kruskal, Prim, Sollin.
- Pemrograman Linear. Saat menyelesaikan sebuah masalah menggunakan pemrograman linear, ketidaksamaan khusus mengikutkan input ditemukan dan percobaan dilakukan untuk memaksimalkan (atau meminimalkan) beberapa fungsi linear dari input. Banyak masalah (seperti alur maksimum untuk grafik terarah) bisa diselesaikan dengan cara pemrograman linear, dan kemudian diselesaikan dengan algoritma 'umum seperti algoritma simplex. Jenis pemrograman linear yang lebih kompleks disebut dengan pemrograman integer, yang mana ruang lingkup solusi dibatasi oleh integer.
- Reduksi. Teknik ini menyelesaikan masalah sulit dengan mengubahnya menjadi permasalahan yang lebih diketahui yang mana kita (berharap) memiliki algoritma asimptotikal optimal. Tujuannya yaitu untuk menemukan sebuah algoritma reduksi yang kompleksitasnya tidak didominasi oleh algoritma hasil reduksi. Sebagai contoh, algoritma seleksi untuk menemukan rata-rata dalam daftar tak terurut mengikutkan mengurutkan daftar (bagian yang paling mahal) dan menarik elemen paling tengah dalam daftar terurut (bagian yang paling mudah). Teknik ini juga diketahui dengan ubah dan taklukan.
- Cari dan enumerasi. Banyak masalah (seperti bermain catur) bisa dimodelkan sebagai masalah danan grafik. Sebuah algoritma eksplorasi grafik menentukan aturan-aturan untuk bergerak disekitar grafik dan berguna bagi masalah tersebut. Kategori ini juga mengikutkan algoritma pencarian, enumerasi batas dan cabang dan backtracking.
- Algoritma pengacakan yaitu yang membuat pilihan secara acak (atau pseudo-acak); untuk beberapa masalah, pada kenyataannya bisa dibuktikan bahwa solusi tercepat harus mengikutkan beberapa keacakan. Ada dua kelas besar dari algoritma ini:
- Algoritma Monte Carlo mengembalikan jawaban yang benar dengan probabilitas-tinggi. Misalnya, RP adalah sub-klas dari algoritma ini yang berjalan dalam waktu polinomial)
- Algoritma Las Vegas selalu mengembalikan jawaban yang benar, tapi waktu prosesnya adalah hanya terikat secara probabilistik, misalnya ZPP.
- Dalam masalah optimisasi, algoritma heuristik tidak mencoba menemukan solusi optimal, tapi solusi terdekat yang mana waktu atau sumber dayanya terbatas. Algoritma ini tidak praktis untuk menemukan solusi yang sempurna. Salah satu contoh dari ini yaitu algoritma pencarian lokal, pencarian tabu, atau simulasi penguatan, sebuah kelompok dari algoritma probabilistik heuristik yang memiliki beragam solusi dari sebuah masalah dengan sejumlah keacakan. Istilah "simulasi penguatan" mengiaskan istilah metalurgi yang artinya pemanasan dan pendinginan besi untuk mendapatkan kebebasan dari cacat. Tujuan dari perbedaan acak adalah untuk menemukan solusi yang mendekati secara global melainkan yang secara lokal, idenya adalah elemen acak berkurang saat algoritma mencapai solusi. Algoritma pendekatan adalah algoritma heuristik yang menambahkan beberapa ikatan pada galat. Algoritma genetik mencoba menemukan solusi dari permasalahan dengan meniru proses evolusi biologis, dengan perputaran mutasi acak menghasilkan generasi yang sukses dari "solusi". Maka, mereka meniru reproduksi dan "seleksi alam". Dalam pemrograman genetik, pendekatan ini dikembangkan ke algoritma, dengan menganggap algoritma itu sendiri sebagai "solusi dari sebuah masalah.
Berdasarkan bidang kajian
Setiap bidang sains memiliki permasalahannya sendiri dan membutuhkan algoritma yang efisien. Masalah yang berkaitan di satu bidang terkadang dipelajari bersama. Beberapa contoh yaitu algoritma pencarian, algoritma penggabungan, algoritma numerik, algoritma grafik, algoritma deret, algoritma komputasi geometri, algoritma kombinatorial, algoritmas medis, mesin belajar, kriptografi, algoritma kompresi data dan teknik penguraian.
Terkadang bidang-bidang tersebut saling tumpang tindih, dan perkembangan algoritma di satu bidang bisa meningkatkan bidang lainnya yang terkadang tidak berkaitan. Sebagai contohnya, pemrograman dinamis ditemukan untuk optimisasi konsumsi sumber daya dalam industri, tapi sekarang digunakan untuk menyelesaikan sejumlah besar permasalahan dalam banyak bidang.
Berdasarkan kompleksitas
Algoritma bisa diklasifikasikan berdasarkan jumlah waktu yang dibutuhkan untuk selesai dibandingkan dengan ukuran inputnya. Ada berbagai varietas: beberapa algoritma selesai dalam waktu linear relatif terhadap ukuran input, beberapa selesai dalam jumlah waktu yang eksponensial atau lebih buruh, dan beberapa berhenti. Sebagai tambahan, beberapa masalah bisa memiliki berbagai algoritama dengan kompleksitas yang berbeda, sementara permasalahan yang lain bisa saja tidak memiliki algoritma atau tidak diketahui algoritmanya yang efisien. Ada juga pemetaan dari beberapa algoritma terhadap permasalahan lain. Karena itu, lebih cocok untuk mengklasifikasikan permasalahan itu sendiri bukannya algoritma menjadi kelas-kelas yang sama berdasarkan kompleksitas dari kemungkinan algoritma terbaik baginya.
Burgin (2005, p. 24) menggunakan definisi algoritma secara umum yang melonggarkan kebutuhan bersama yang keluaran dari algoritma yang menjalankan sebuah fungsi harus ditentukan setelah sejumlah langkah. Dia mendefinisikan kelas super-rekursif dari algoritma sebagai "sebuah kelas algoritma yang mana memungkinkan untuk menghitung fungsi yang tidak bisa dihitung oleh mesin Turing manapun" (Burgin 2005, p. 107). Hal ini berkaitan dekat dengan kajian dari metoda hiperkomputasi.
Algoritma berkelanjutan
Kata sifat "berkelanjutan" bila diterapkan pada kata "algoritma" bisa berarti:
- Sebuah algoritma beroperasi pada data yang merepresentasikan kuantitas yang berkelanjutan, walaupun data tersebut direpresentasikan oleh pendekatan diskrit -- seperti algoritma yang dipelajari dalam analisis numerik; atau
- Sebuah algoritma dalam bentuk dari persamaan diferensial yang beroperasi secara berkelanjutan terhadap data, berjalan dalam sebuah komputer analog.
Isu legalitas
- Lihat juga: Paten perangkat lunak untuk pendahuluan umum dari paten pada perangkat lunak, termasuk algoritma untuk diimplementasikan pada komputer.
Algoritma biasanya tidak dipatenkan. Di Amerika Serikat, sebuah klaim yang terdiri hanya dari manipulasi sederhana dari konsep abstrak, angka, atau sinyal tidak berarti suatu "process" (SPTO 2006), dan oleh karena itu algoritma tidak bisa dipatenkan (sebagaimana dalam Gottschalk v. Benson). Namun, penerapan praktis dari algoritma terkadang dipatenkan. Sebagai contohnya, dalam Diamond v. Diehr, aplikasi dari algoritma umpan-balik sederhana untuk membantu dalam menyembuhkan karet sintetis dianggap dapat dipatenkan. Mematenkan perangkat lunak sangat kontroversial, dan ada paten yang mengikutkan algoritma yang sangat dikritisi, terutama algoritma kompresi data, seperti Format Grafiknya Unisys.
Sebagai tambahan, beberapa algoritma kriptografi memiliki batasan ekspor (lihat ekspor dari kriptografi).
Etimologi
Kata "Algoritma", atau "Algorisma" pada versi penulisan lain, datang dari nama al-Khwarizmi. dieja dalam Arab klasik sebagai Al-Khwarithmi. Al-khwarizmi adalah matematikawan, ahli astronomi, ahli geografi dari Persia dan sarjana House of Wisdom di Baghdad, yang arti namanya "penduduk asli Khwarezm", sebuah kota yang merupakan bagian dari Wilayah Iran pada masanya dan sekarang Uzbekistan [52]. [53] [54] Sekitar tahun 825, dia menulis risalah dalam bahasa Arab, yang diterjemahkan dalam Latin pada abad ke-12 dengan judul Algoritmi de numero Indorum. Judul ini artinya "Algoritmi pada bilangan India", dimana "Algoritmi" adalah pelatinan penerjemah dari nama Al-Khwarizmi. [55] Al-Khwarizmi dulunya adalah matematikawan yang paling banyak dibaca di Eropa pada akhir Abad Pertengahan, pada umum lewat bukunya yang lain, Aljabar. [56] Pada akhir abad pertengahan, algorismus, perubahan dari namanya, berarti "sistem bilangan desimal" yang masih merupakan arti dari kata Inggris moderen algorism. Pada abad ke-17 Prancis kata tersebut berubah, tapi tidak maknanya, menjadi algorithme. Inggris mengadopsi Prancis setelahnya, tapi tidak pada akhir abad ke-19 lah "Algorithm" mengambil makna dari kata Inggris masa sekarang. [57]
Sejarah: Perkembangan dari kata "algoritma"
Asal mula
Kata algoritma datang dari nama matematikawan muslim Persia abad ke-9 Abu Abdullah Muhammad ibnu Musa Al-Khwarizmi, yang hasil kerjanya dibangun dari matematikawan India abad ke-7 Brahmagupta. Kata algorisma awalnya mengacu hanya pada aturan-aturan dalam melakukan aritmatika menggunakan bilangan Hindu-Arab namun berkembang lewat penerjemahan Latin Eropa dari nama Al-Khwarizmi menjadi algoritma pada abad ke-18. Penggunaan kata tersebut berkembang mengikutkan semua prosedur untuk menyelesaikan masalah atau melakukan unit kegiatan. [58]
Simbol diskrit dan yang dapat dibedakan
Penanda-penghitung: Untuk mencatat hewan gembalaan, kumpulan biji dan uang mereka orang dahulu menggunakan penghitung: akumulasi batu atau tanda yang ditoreh pada tongkat, atau membuat simbol diskrit di kerang. Sampai orang Babilonia dan Mesir menggunakan tanda dan simbol, pada akhirnya bilangan Roma dan abakus berkembang (Dilson, p. 16-41). Penanda penghitung muncul dalam sistem bilangan operan aritmatika digunakan dalam mesin Turing dan komputasi mesin Post-Turing.
Manipulasi simbol sebagai "penampung" bilangan: aljabar
Karya dari Geometer Yunani kuno (algoritma Euklid), matematikawan India Brahmagupta, dan matematikawan Persia Al-Khwarizmi (yang darinya isitlah "algorism" dan "algoritma" diturunkan), dan matematikawan Eropa Barat memuncak dalam notasi Leibniz dari rasiosinator kalkulus (sekitar 1680-an):
Abad yang baik dan setengah lebih maju dari masanya, Leibniz mengajukan logika aljabar, sebuah aljabar yang akan menentukan aturan-aturan untuk memanipulasi konsep logika dengan cara yang aljabar biasa menentukan aturan untuk manipulasi angka.[59]
Rancangan mekanis dengan tingkat diskrit
Jam: Bolter memuji penemuan jam gaya-berat sebagai "Kunci penemuan [dari Eropa di Abad Pertengahan]]", khususnya pada ambang pelarian [60] yang menyediakan kita dengan tik dan tak dari jam mekanis. "Mesin otomatis yang akurat" [61] mengarah langsung pada "otomata mekanis" dimulai pada abad ke-13 dan terakhir pada "mesin komputasi" -- motor berbeda dan motor analitik dari Charles Babbage dan bangsawan Ada Lovelace, pertengahan abad ke-19. [62] Lovelace dikreditkan sebagai yang pertama menciptakan algoritma yang ditujukan untuk diproses di komputer -- motor analitis Babbage, perangkat pertama yang dianggap komputer Turing-sempurna sebenarnya bukan hanya sebuah kalkulator -- dan terkadang dikenal "programmer pertama dalam sejarah", walaupun implementasi penuh dari perangkat Babbage kedua tidak terealisasi sampai beberapa dekade setelah masanya.
Mesin logika 1870 - Stanley Jevons' "sempoa logika" dan "mesin logika": Masalah teknisnya adalah untuk mengurangi persamaan boolean bila ditampilkan dalam sebuah bentuk yang pada masa sekarang dikenal sebagai pemetaan Karnaugh. Jevons (1880) pertama menjelaskan "sempoa" sederhana dari "potongan kayu dilengkapi dengan penyemat, dibuat supaya bagian atau kelas kombinasi [logika]] manapun dapat dipilih secara mekanis ... Baru-baru ini Saya telah mengurangi sistem menjadi bentu yang secara sempurna mekanis, dan membuatnya mewujudkan keseluruhan proses inferensi tak langsung dalam apa yang disebut sebuah Mesin Logika" Mesinnya dilengkapi dengan "beberapa tangkai kayu yang bisa dipindahkan" dan "di bawah ada 21 kunci seperti pada piano [dll] ...". Dengan mesin ini dia dapat menganalis sebuah "silogisme atau argumen logika sederhana apapun". [63]
Mesin tenun Jacquard, kartu berlobangnya Hollerith, telegraf dan telepon -- penyiaran elektromekanis: Bell dan Newell (1971) mengindikasikan bahwa mesin tenun Jacquard (1801), pelopor dari kartu Hollerith (kartu berlobang, 1887), dan "teknologi alih telepon" adalah akar dari sebuah pohon yang mengarah pada perkembangan dari komputer pertama. [64] Pada pertengahan abad ke-19 telegraf, pelopor dari telepon, digunakan diseluruh dunia, pengkodean diskrit dan pembedaan huruf sebagai "titik dan strip". Pada akhir abad ke-19 pita telegraf (sekitar 1870-an) digunakan, sebagaimana juga kartu Hollerith pada sensus Amerika 1890. Kemudian muncullah teleprinter (sekitar 1910-an) dengan kerta-berlobang menggunakan kode Baudot di pita.
Jaringan alih-telepon dari penyiaran elektromekanis (ditemukan 1835) adalah karya dair George Stibitz (1937), penemu dari perangkat penghitungan digital. Saat bekerja di laboratorium Bell, dia mengamati "beratnya" penggunaan kalkulator mekanis dengan geligi. "Dia pulang ke rumah pada suatu malam 1937 berniat untuk menguji idenya ... Saat mengatik selesai, Stibitz telah membangun perangkat hitung digital". [65]
Davis (2000) mengamati pentingnya penyiaran elektromekanis (dengan "keadaan binari"-nya buka dan tutup):
- Hanya dengan perkembangan, dimulai sejak 1930-an, dari kalkulator elektromekanis menggunakan penggantian elektris, sehingga mesin yang dibuat memiliki ruang lingkup yang dibayangkan Babbage." [66]
Matematika selama abad 19 sampai pertengahan abad 20
Symbol dan aturan: Dengan cepat berkembangnya matematika dari George Boole (1847, 1854), Gottlob Frege (1897), dan Giuseppe Peano (1888-1889) mengurangi aritmatika menjadi serangkaian simbol dimanipulasi oleh aturan-aturan. The Principles of arithmetic, presented by a new method-nya Peano (1888) adalah "usaha pertama mengaksiomakan matematika dalam sebuah bahasa simbolik". [67]
Tapi Heijenoort memberi pujian pada Frege (1879): Frege "merupakan karya tulis paling penting mengenai logika. ... yang mana kita lihat sebuah "'bahasa formula', yaitu sebuah lingua characterica, sebuah bahasa ditulis dengan simbol-simbol khusus, "untuk berpikir murni", yaiut, bebas dari hiasan retorikal ... dibangun dari simbol-simbol tertentu yang dimanipulasi menurut aturan-aturan terbatas". [68] Karya dari Frege lebih lanjut disederhanakan dan diperkuat oleh Alfred North Whitehead dan Bertrand Russell dalam Principia Mathematical (1910-1913).
Paradoks: Pada masa yang sama sejumlah paradoks yang mengganggu muncul dalam literatur, pada khususnya paradoks Burali-Forti (1987), paradoks Russell (1902-03), dan Paradoks Richard. [69] Hasilnya mengarah ke makalah Kurt Godel (1931) -- dia secara khusus merujuk paradoks pembohong -- yang mengurangi aturan dari rekursi pada angka.
Penghitungan Efektif: Dalam usaha untuk menyelesaikan Entscheidungsproblem yang didefinisikan oleh Hilbert tahun 1928, matematikawan pertama mendefinisikan apa arti dari "metoda efektif" atau "kalkulasi efektif" (misalnya, sebuah kalkulasi yang akan sukses). Dalam waktu yang cepat hal berikut muncul: kalkulus-λ oleh Alonzo Church, Stephen Kleene, dan J.B. Rosser [70] definisi dari "rekursi umum" yang benar-benar diasah dari karya Godel berdasarkan saran dari Jacquard Herbrand (cf. kuliah Godel di Princeton tahun 1934) dan penyederhaan selanjutnya oleh Kleene. [71] Church membuktikan [72] bahwa Entscheidungsproblem tidak terpecahkan, definisi Emil Post tentang penghitungan efektif yaitu sebagai pekerja yang tanpa berpikir mengikuti suatu daftar instruksi untuk bergerak ke kiri atau kanan lewat sederetan ruangan dan bersamaan dengan itu bisa menandai atau menghapus kertas atau mengamati kertas dan membuat pilihan ya-tidak tentang instruksi selanjutnya. [73] Pembuktian Alan Turing bahwa Entscheidungsproblem tidak terpecahkan dengan menggunakan "sebuah mesin [otomatis]"-nya [74] dengan efek yang mirip dengan "formulasi"-nya Post, definisi J. Barkley Rosser tentang "metoda efektif" dalam makna "sebuah mesin". [75] Proposal S. C. Kleene dari pelopor "Tesis Church" yang disebutnya "Thesis I", [76] dan beberapa tahun kemudian Kleene menamakan tesisnya "Tesis Church" [77] dan mengajukan "Tesis Turing". [78]
Emil Post (1936) dan Alan Turing (1936-37, 1939)
Berikut adalah kebetulan yang luar biasa dari dua orang yang tidak tahu satu sama lain tapi mendeskripsikan proses orang-sebagai-komputer mengerjakan komputasi -- dan mereka menghasilkan definisi yang mirip.
Emil Post (1936) mendeskripsikan aksi dari sebuah "komputer" (manusia) sebagai berikut:
- "... dua konsep ikut serta: yaitu sebuah simbol ruang dimana pekerjaan mengarah dari masalah ke jawaban dilakukan, dan sekumpulan arahan yang baku dan tidak bisa diubah.
Simbol ruangnya yaitu
- "sederetan dua arah tak terbatas dari ruang atau kotak... penyelesai masalah atau pekerja harus berjalan dan bekerja di simbol ruang ini, dengan bisanya masuk, dan beroperasi dengan satu kotak dalam satu waktu... sebuah kotak memiliki dua kemungkinan kondisi, yaitu, kosong atau belum ditandai, dan dengan adanya tanda tunggal disana, katakanlah garis vertikal.
- "Satu kotak dibiarkan dan disebut sebagai titik awal. ...sebuah masalah tertentu diberikan dalam bentuk simbolik dengan sejumlah kotak terbatas [yaitu, INPUT] ditandai dengan coretan. Begitu juga jawabannya [yaitu, OUTPUT] diberikan dalam bentuk simbolik dari suatu konfigurasi dari kotak-kotak yang ditandai....
- "Sekumpulan arahan bisa digunakan untuk permasalahan umum menentukan proses determistik saat diterapkan pada setiap masalah tertentu. Proses ini hanya berhenti bila datang arahan dengan tipe (C ) [yaitu, STOP]". [79] Lihat lebih lanjut pada mesin post-Turing Karya Alan Turing [80] mendahului Stibitz (1937); tidak diketahui apakah Stibitz tahu dengan karya Turing. Biografi Turing percaya bahwa Turing menggunakan model seperti-mesin-ketik diturunkan dari ketertarikan pada masa muda: "Alan memiliki impian menemukan mesin ketik pada saat muda; Ibu Turing memiliki sebuah mesin ketik; dan dia mungkin memulainya dengan menanyakan pada dirinya sendiri apa maksudnya dengan menyebut sebuah mesin ketik dengan 'mekanikal'". [81] Dengan lazimnya kode Morse dan telegraf, mesin pita telegraf, dan mesin-ketik jarak jauh kita bisa menyimpulkan bahwa semua itu berpengaruh.
Turing -- model dari komputasinya sekarang dikenal dengan mesin Turing -- memulai, sebagaimana Post, dengan analisa dari komputer manusia yang ia sederhanakan menjadi sekumpulan gerakan dasar sederhana dan "keadaan pikiran". Tapi dia terus maju selangkah ke depan dan membuat sebuah mesin sebagai model dari komputasi angka. [82]
- "Menghitung biasanya dilakukan dengan menulis simbol tertentu di atas kertas. Misalkan kertas tersebut dibagi menjadi segi empat seperti buku aritmatika anak-anak.... Saya asumsikan bahwa komputasi dilakukan pada kertas satu dimensi, yaitu, di pita yang dibagi dalam persegi. Juga misalkan bahwa jumlah simbol yang akan dicetak terbatas....
- "Perilaku dari komputer disetiap waktu ditentukan oleh simbol yang diobservasinya, dan "keadaan pikiran"-nya pada waktu tersebut. Juga bisa diasumsikan bahwa ada batas B sebagai jumlah simbol atau persegi yang mana komputer dapat amati dalam satu waktu. Jika ia ingin mengamati lebih, ia harus menggunakan pengamatan beriringan. Kita juga memisalkan bahwa jumlah keadaan pikiran yang diperlukan disini adalah terbatas...
- "Mari kita bayangkan bahwa operasi yang dilakukan oleh komputer akan dipecah menjadi 'operasi-operasi sederhana' yang sangat mendasar sehingga tidak mudah membayangkannya untuk dibagi lebih jauh." [83]
Reduksi Turing menghasilkan hal berikut:
- "Operasi sederhana haruslah mengikutkan:
- "(a) Perubahan dari simbol pada salah satu persegi yang sedang diamati
- "(b) Perubahan dari salah satu persegi diamati terhadap persegi lainnya di antara L persegi dari salah satu yang sebelumnya diamati.
"Bisa saja beberapa dari perubahan tersebut menyebabkan perubahan keadaan pikiran. Operasi tunggal paling umum oleh karena itu harus diambil jadi salah satu hal berikut:
- "(A) Suatu kemungkinan perubahan (a) dari simbol bersamaan dengan suatu perubahan dari keadaan pikiran.
- "(B) Suatu kemungknian perubahan (b) dari persegi yang diamati, bersama dengan kemungkinan perubahan dari keadaan pikiran"
- "Kita sekarang mungkin sudah bisa membentuk sebuah mesin untuk melakukan pekerjaan dari komputer tersebut." [83]
Beberapa tahun kemudian, Turing mengembangkan analisanya (tesis, secara definisi) dengan ekspresi kuat berikut:
- "Sebuah fungsi dikatakan "bisa dihitung secara efektif" jika nilainya bisa ditemukan dengan proses yang murni mekanis.
Walau sangat mudah menangkap ide ini, namun ia membutuhkan beberapa definisi matematikan terbatas yang bisa diekspresikan . . . [dia mendiskusikan sejarah dari definisi seperti di atas dengan menghormati Godel, Herbrand, Kleen, Church, Turing dan Post] ... Kita mungkin gunakan pernyataan tersebut secara harfiah, memahami murni dengan proses mekanis yang mana dapat dilakukan oleh sebuah mesin. Memungkinkan untuk memberikan deskripsi matematis, dalam beberapa bentuk normal, dari struktur mesin tersebut. Perkembangan dari ide ini mengarah pada definisi penulis dari sebuah fungsi yang dapat dihitung, dan untuk mengidentifikasi komputibilitas † dengan penghitungan yang efektif . . . .
- "† Kita boleh menggunakan ekspresi "fungsi hitung" untuk mengartikan sebuah fungsi yang dapat dihitung oleh sebuah mesin, dan kita biarkan "secara efektif dapat dihitung" mengacu pada ide intuitif tanpa definisi tertentu dengan salah satu dari definisi tersebut". [84]
J. B. Rosser (1939) dan S. C. Kleene (1943)
J. Barkley Rosser mendefinisikan sebuah 'metoda [matematis] efektif' dalam cara berikut (penebalan ditambahkan):
- "'Metoda efektif' digunakan di sini bukan makna khusus dari sebuah metoda yang setiap langkahnya secara tepat ditentukan dan pasti menghasilkan jawaban dalam sejumlah langkah yang terbatas.
Dengan pengertian khusus ini, tiga definisi berbeda telah diajukan sampai sekarang. [catatan kakinya #5; lihat diskusinya di bawah]. Yang paling sederhana (karena Post dan Turing) menyatakan intinya bahwa sebuah metoda efektif menyelesaikan sekumpulan permasalahan hanya ada jika seseorang bisa membuat sebuah mesin yang akan menyelesaikan setiap masalah dari sekumpulan masalah tanpa campur tangan manusia kecuali memasukan pertanyaan dan (nantinya) membaca jawabannya. Ketiga definisi tersebut sama, jadi tidak masalah yang mana yang digunakan. Lebih lanjut, fakta bahwa ketiganya sama adalah argumen yang sangat kuat untuk kebenaran dari salah satunya." (Rosser 1939:225-6)
Catatan kaki Rosser #5 merujuk karya dari (1) Church dan Kleene dan definisi dari λ-definabiliti, secara khusus Church menggunakannya dalam An Unsolvable Problem of Elementary Number Theory-nya (1936); (2) Herbrand dan Godel dan penggunaan rekursi mereka terutama Godel menggunakannya dalam makalah terkenalnya On Formally Undecidable Propositions of Principia Mathematica and Related Systems I (1931); dan (3) Post (1936) dan Turing (1936-7) dalam model mekanisme komputasi mereka.
Stephen C. Kleene didefinisikan sebagai "Thesis I" nya yang terkenal yang dikenal sebagai tesis Church-Turing. Tapi dia melakukan hal tersebut dalam konteks berikut (penebalan dari aslinya):
- "12. Teori-teori algoritma... Dalam menyiapkan sebuah teori algoritma yang komplit, apa yang kita lakukan adalah mendeskripsikan sebuah prosedur, yang dapat dilakukan untuk setiap kumpulan nilai dari variabel-variabel tunggal, yang mana prosedur berhenti dan dengan cara tersebut dari hasilnya kita bisa membaca sebuah jawaban tertentu, "ya" atau tidak", untuk pertanyaan "apakah nilai predikat benar?"" (Kleene 1943:273)
Sejarah setelah 1950
Sejumlah usaha telah diarahkan keperbaikan lebih jauh dari definisi dari "algoritma", dan aktivitas tersebut masih sedang berjalan karena isu-isu yang mengelilingi, terutama, fondasi matematika (khususnya tesis Church-Turing) dan filsafat pikiran (khususnya argumen menyangkut kecerdasan buatan). Lebih lanjut, lihat karakterisasi algoritma.
Lihat juga
Catatan
- ^ "Setiap algoritma klasik, misalnya, bisa dijelaskan dengan sejumlah kata bahasa Inggris yang terbatas" (Rogers 1987:2).
- ^ Telah didefinisikan terhadap agen yang menjalankan algoritma tersebut: "Ada agen komputasi, biasanya manusia, yang bisa beraksi terhadap instruksi dan melakukan komputasi" (Rogers 1987:2).
- ^ "Sebuah algoritma adalah sebuah prosedur untuk menghitung sebuah fungsi (terhadap beberapa notasi terpilih integer) ... batasan ini (terhadap fungsi bilangan) tanpa kehilangan generalisasi", (Rogers 1987:1).
- ^ Sebuah algoritma memiliki input nol atau lebih, yaitu, kuantitas yang diberikan padanya sejak awal sebelum algoritma dijalankan" (Knuth 1973:5).
- ^ "Sebuah prosedur yang memiliki semua karakteristik dari sebuah algoritma kecuali prosedur yang tidak memiliki keterbatasan bisa disebut sebagai sebuah 'metode komputasi'" (Knuth 1973:5).
- ^ "Sebuah algoritma memiliki satu atau lebih keluaran, yaitu kuantitas yang memiliki relasi tertentu terhadap masukan" (Knuth 1973:5).
- ^ Apakah sebuah proses dengan proses-proses bagian dalam yang acak (tidak termasuk masukan) adalah sebuah algoritma atau bukan masih diperdebatkan. Rogers beropini bahwa: "sebuah komputasi dilakukan dengan sebuah gaya diskrit bertahap, tanpa menggunakan metode-metode berkelanjutan atau perangkat analog ... dijalakan terus secara deterministik, tanpa menggunakan metode-metode atau perangkat acak, misalnya, dadu" Rogers 1987:2
- ^ Kleene 1943 dalam Davis 1965:274
- ^ Rosser 1939 dalam Davis 1965:225
- ^ Moschovakis, Yiannis N. (2001). "What is an algorithm?". Dalam Engquist, B.; Schmid, W. Mathematics Unlimited — 2001 and beyond. Springer. hlm. 919–936 (Part II). ISBN 9783540669135.
- ^ Stone 1973:4
- ^ Stone secara sederhana membutuhkan "harus berhenti dalam sejumlah langkah" (Stone 1973:7-8).
- ^ Boolos and Jeffrey 1974, 1999:19
- ^ cf Stone 1972:5
- ^ Knuth 1973:7 menyatakan: "Pada praktiknya kita tidak hanya menginginkan algoritma, kita menginginkan algoritam yang baik ... salah satu kriteria dari kebaikannya adalah lama waktu yang digunakan untuk menjalankan algoritma ... kriteria lainnya adalah kemampuan adaptasi dari algoritma ke komputer, kesederhanaan dan elegan, dll."
- ^ cf Stone 1973:6
- ^ Stone 1973:7-8 menyatakan bahwa harus ada, "... sebuah prosedur yang robot [yaitu komputer] bisa ikuti supaya dapat menentukan secara tepat bagaimana mengikuti instruksi tersebut." Stone menambahkan keterbatasan dari proses, dan kepastian (tidak memiliki kerancuan pada instruksi) pada definisi tersebut.
- ^ Knuth, loc. cit
- ^ Minsky 1967:105
- ^ Gurevich 2000:1, 3
- ^ Sipser 2006:157
- ^ Knuth 1973:7
- ^ Chaitin 2005:32
- ^ Rogers 1987:1-2
- ^ Dalam esainya "Calculations by Man and Machine: Conceptual Analysis" Seig 2002:390 memuji perbedaan ini oleh Robin Gandy, cf Wilfred Seig, dll., 2002 Reflections on the foundations of mathematics: Essays in honor of Solomon Feferman, Association for Symbolic Logic, A. K Peters Ltd, Natick, MA.
- ^ cf gandy 1980:126, robin gandy church's thesis and principles for mechanisms appearing on pp. 123–148 in j. barwise et al. 1980 the kleene symposium, north-holland publishing company.
- ^ Sebuah "robot": "Sebuah komputer adalah sebuah robot yang melakukan setiap tugas yang dapat dijelaskan sebagai urutan dari instruksi." cf Stone 1972:3
- ^ "abacus"-nya Lambek adalah "sejumlah lokasi tak terbatas yang bisa dihitung (lubang, kabel, dll.) berikut dengan persediaan penghitung yang tak terbatas (kerikil, remah roti, dll). Lokasinya bisa dibedakan, penghitungnya tidak". Lubangnya memiliki kapasitas tak terbatas, dan digerakan oleh agen yang memahami dan mampu menjalankan sejumlah instruksi" (Lambek 1961:295). Lambek mengacu Melzak yang mendefinisikan mesin-Q nya sebagau "sejumlah lokasi yang besar tanpa batas ... persediaan penghitung yang tanpa batas yang terdistribusi diantara lokasi-lokasi tersebut, sebuah program, dan sebuah operator yang tujuan satu-satunya yaitu menjalankan program." (Melzak 1961:283). B-B-J (loc. cit.) menambahkan syarat bahwa lubang tersebut "mampu menyimpan sejumlah batu" (p. 46). Melzak dan Lambek muncul di The Canadian Mathematical Bulletin, vol. 4, no. 3, September 1961.
- ^ Jika tidak ada kebingungan yang dihasilkan, kata "penghitung" bisa dihiraukan, dan sebuah lokasi bisa dikatakan mengandung sebuah "angka".
- ^ "Kita mengatakan bahwa instruksi adalah efektif bila ada sebuah prosedur yang robot dapat ikuti supaya dapat menentukan secara tepat bagaimana mematuhi instruksi." (Stone 1972:6)
- ^ Knuth 1973:4
- ^ Strone 1972:5. Metode untuk mendapatkan akar tidaklah biasa: lihat Metoda untuk menghitung akar kuadrat.
- ^ Leeuwen, Jan (1990). Handbook of Theoretical Computer Science: Algorithms and complexity. Volume A. Elsevier. hlm. 85. ISBN 978-0-444-88071-0.
- ^ John G. Kemeny and Thomas E. Kurtz 1985 Back to Basic: The History, Corruption, and Future of the Language, Addison-Wesley Publishing Company, Inc. Reading, MA, ISBN 0-201-13433-0.
- ^ Tausworthe 1977:101
- ^ Tausworthe 1977:142
- ^ Knuth 1973 bagian 1.2.1, dikembangkan oleh Tausworthe 1977 di halaman 100ff dan Bab 9.1
- ^ cf Tausworthe 1977
- ^ Heath 1908:300; Hawking's Dover 2005 edisi diambil dari Heath.
- ^ "'Biarkan CD, mengukur BF, meninggalkan FA kurang darinya.' Hal ini merupakan singkatan cerdik untuk mengatakan, ukur pada BA panjang yang sama dengan CD sampai titik F sehingga sisa panjang FA kurang dari CD; dengan kata lain, misalkan BF adalah yang kelipatan terbesar dari CD yang terdapat dalam BA" (Heath 1908:297)
- ^ Untuk percobaan moden menggunakan pembagian dalam algoritma lihat Hardy dan Wright 1979:180, Knuth 1973:2 (Volume 1), ditambah diskusi tentang algoritma Euclid dalam Knuth 1969:293-297 (Volume 2).
- ^ Euclid mengungkapkan pertanyaan ini dalam Proposisi 1 nya.
- ^ "Euclid's Elements, Book VII, Proposition 2". Aleph0.clarku.edu. Diakses tanggal May 20, 2012.
- ^ Knuth 1973:13-18. Dia memuji "the formulation of algorithm-proving in terms of asertions and induction" kepada R. W. Floyd, Peter Naur, C. A. R. Hoare, H. H. Goldstine dan J. von Neumann. Tausworth 1977 meminjam contoh Euclid Knuth dan mengembangkan metoda Knuth di bab 9.1 Formal Proofs (pages 288–298).
- ^ Tausworthe 1997:294
- ^ cf Knuth 1973:7 (Vol. I), and his more-detailed analyses on pp. 1969:294-313 (Vol II).
- ^ Kesalahan terjadi saat sebuah algoritma mencoba memadatkan dirinya sendiri. Keberhasilan akan memecahkan permasalahan perhentian.
- ^ Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price , "ACM-SIAM Symposium On Discrete Algorithms (SODA) , Kyoto, January 2012. Lihat juga sFFT Web Page.
- ^ Kowalski 1979
- ^ Carroll, Sue; Daughtrey, Taz (July 4, 2007). Fundamental Concepts for the Software Quality Engineer. American Society for Quality. hlm. 282 et seq. ISBN 978-0-87389-720-4.
- ^ Tsypkin (1971). Adaptation and learning in automatic systems. Academic Press. hlm. 54. ISBN 978-0-08-095582-7.
- ^ Toomer 1990, Templat:Citation not found.
- ^ Hogendijk, Jan P. (1998). "al-Khwarzimi". Pythagoras. 38 (2): 4–5. [pranala nonaktif]
- ^ Oaks, Jeffrey A. "Was al-Khwarizmi an applied algebraist?". University of Indianapolis. Diakses tanggal May 30, 2008.
- ^ Brezina, Corona (2006). Al-Khwarizmi: The Inventor Of Algebra. The Rosen Publishing Group. ISBN 978-1-4042-0513-0.
- ^ Foremost mathematical texts in history, according to Carl B. Boyer.
- ^ Etymology of algorithm at Dictionary.Reference.com
- ^ "History of Algorithms and Algorithmics". Scriptol.com. Diakses tanggal November 7, 2012.
- ^ Davis 2000:18
- ^ Bolter 1984:24
- ^ Bolder 1984:26
- ^ Bolter 1984:33–34, 204–206.
- ^ All quotes from W. Stanley Jevons 1880 Elementary Lessons in Logic: Deductive and Inductive, Macmillan and Co., London and New York. Republished as a googlebook; cf Jevons 1880:199–201. Louis Couturat 1914 the Algebra of Logic, The Open Court Publishing Company, Chicago and London. Republished as a googlebook; cf Couturat 1914:75–76 gives a few more details; interestingly he compares this to a typewriter as well as a piano. Jevons states that the account is to be found at Jan . 20, 1870 The Proceedings of the Royal Society.
- ^ Bell and Newell diagram 1971:39, cf. Davis 2000
- ^ * Melina Hill, Valley News Correspondent, A Tinkerer Gets a Place in History, Valley News West Lebanon NH, Thursday March 31, 1983, page 13.
- ^ Davis 2000:14
- ^ van Heijenoort 1967:81ff
- ^ van Heijenoort's commentary on Frege's Begriffsschrift, a formula language, modeled upon that of arithmetic, for pure thought in van Heijenoort 1967:1
- ^ Dixon 1906, cf. Kleene 1952:36–40
- ^ cf. footnote in Alonzo Church 1936a in Davis 1965:90 and 1936b in Davis 1965:110
- ^ Kleene 1935–6 in Davis 1965:237ff, Kleene 1943 in Davis 1965:255ff
- ^ Church 1936 in Davis 1965:88ff
- ^ cf. "Formulation I", Post 1936 in Davis 1965:289–290
- ^ Turing 1936–7 in Davis 1965:116ff
- ^ Rosser 1939 in Davis 1965:226
- ^ Kleene 1943 in Davis 1965:273–274
- ^ Kleene 1952:300, 317
- ^ Kleene 1952:376
- ^ Turing 1936–7 in Davis 1965:289–290
- ^ Turing 1936 in Davis 1965, Turing 1939 in Davis 1965:160
- ^ Hodges, p. 96
- ^ Turing 1936–7:116
- ^ a b Turing 1936–7 in Davis 1965:136
- ^ Turing 1939 in Davis 1965:160
Referensi
- Axt, P. (1959) On a Subrecursive Hierarchy and Primitive Recursive Degrees, Transactions of the American Mathematical Society 92, pp. 85–105
- Bell, C. Gordon and Newell, Allen (1971), Computer Structures: Readings and Examples, McGraw-Hill Book Company, New York. ISBN 0-07-004357-4.
- Blass, Andreas; Gurevich, Yuri (2003). "Algorithms: A Quest for Absolute Definitions" (PDF). Bulletin of European Association for Theoretical Computer Science. 81. Includes an excellent bibliography of 56 references.
- Boolos, George; Jeffrey, Richard (1974, 1999). Computability and Logic (edisi ke-4th). Cambridge University Press, London. ISBN 0-521-20402-X. : cf. Chapter 3 Turing machines where they discuss "certain enumerable sets not effectively (mechanically) enumerable".
- Burgin, Mark (2004). Super-Recursive Algorithms. Springer. ISBN 978-0-387-95569-8.
- Campagnolo, M.L., Moore, C., and Costa, J.F. (2000) An analog characterization of the subrecursive functions. In Proc. of the 4th Conference on Real Numbers and Computers, Odense University, pp. 91–109
- Church, Alonzo (1936a). "An Unsolvable Problem of Elementary Number Theory". The American Journal of Mathematics. 58 (2): 345–363. doi:10.2307/2371045. JSTOR 2371045. Reprinted in The Undecidable, p. 89ff. The first expression of "Church's Thesis". See in particular page 100 (The Undecidable) where he defines the notion of "effective calculability" in terms of "an algorithm", and he uses the word "terminates", etc.
- Church, Alonzo (1936b). "A Note on the Entscheidungsproblem". The Journal of Symbolic Logic. 1 (1): 40–41. doi:10.2307/2269326. JSTOR 2269326. Church, Alonzo (1936). "Correction to a Note on the Entscheidungsproblem". The Journal of Symbolic Logic. 1 (3): 101–102. doi:10.2307/2269030. JSTOR 2269030. Reprinted in The Undecidable, p. 110ff. Church shows that the Entscheidungsproblem is unsolvable in about 3 pages of text and 3 pages of footnotes.
- Daffa', Ali Abdullah al- (1977). The Muslim contribution to mathematics. London: Croom Helm. ISBN 0-85664-464-1.
- Davis, Martin (1965). The Undecidable: Basic Papers On Undecidable Propositions, Unsolvable Problems and Computable Functions. New York: Raven Press. ISBN 0-486-43228-9. Davis gives commentary before each article. Papers of Gödel, Alonzo Church, Turing, Rosser, Kleene, and Emil Post are included; those cited in the article are listed here by author's name.
- Davis, Martin (2000). Engines of Logic: Mathematicians and the Origin of the Computer. New York: W. W. Nortion. ISBN 0-393-32229-7. Davis offers concise biographies of Leibniz, Boole, Frege, Cantor, Hilbert, Gödel and Turing with von Neumann as the show-stealing villain. Very brief bios of Joseph-Marie Jacquard, Babbage, Ada Lovelace, Claude Shannon, Howard Aiken, etc.
- Templat:DADS
- Dennett, Daniel (1995). Darwin's Dangerous Idea. New York: Touchstone/Simon & Schuster. ISBN 0-684-80290-2.
- Yuri Gurevich, Sequential Abstract State Machines Capture Sequential Algorithms, ACM Transactions on Computational Logic, Vol 1, no 1 (July 2000), pages 77–111. Includes bibliography of 33 sources.
- Kleene C., Stephen (1936). "General Recursive Functions of Natural Numbers". Mathematische Annalen. 112 (5): 727–742. doi:10.1007/BF01565439. Presented to the American Mathematical Society, September 1935. Reprinted in The Undecidable, p. 237ff. Kleene's definition of "general recursion" (known now as mu-recursion) was used by Church in his 1935 paper An Unsolvable Problem of Elementary Number Theory that proved the "decision problem" to be "undecidable" (i.e., a negative result).
- Kleene C., Stephen (1943). "Recursive Predicates and Quantifiers". American Mathematical Society Transactions. 54 (1): 41–73. doi:10.2307/1990131. JSTOR 1990131. Reprinted in The Undecidable, p. 255ff. Kleene refined his definition of "general recursion" and proceeded in his chapter "12. Algorithmic theories" to posit "Thesis I" (p. 274); he would later repeat this thesis (in Kleene 1952:300) and name it "Church's Thesis"(Kleene 1952:317) (i.e., the Church thesis).
- Kleene, Stephen C. (First Edition 1952). Introduction to Metamathematics (edisi ke-Tenth Edition 1991). North-Holland Publishing Company. ISBN 0-7204-2103-9. Excellent—accessible, readable—reference source for mathematical "foundations".
- Knuth, Donald (1997). Fundamental Algorithms, Third Edition. Reading, Massachusetts: Addison–Wesley. ISBN 0-201-89683-4.
- Knuth, Donald (1969). Volume 2/Seminumerical Algorithms, The Art of Computer Programming First Edition. Reading, Massachusetts: Addison–Wesley.
- Kosovsky, N. K. Elements of Mathematical Logic and its Application to the theory of Subrecursive Algorithms, LSU Publ., Leningrad, 1981
- Kowalski, Robert (1979). "Algorithm=Logic+Control". Communications of the ACM. 22 (7): 424–436. doi:10.1145/359131.359136.
- A. A. Markov (1954) Theory of algorithms. [Translated by Jacques J. Schorr-Kon and PST staff] Imprint Moscow, Academy of Sciences of the USSR, 1954 [i.e., Jerusalem, Israel Program for Scientific Translations, 1961; available from the Office of Technical Services, U.S. Dept. of Commerce, Washington] Description 444 p. 28 cm. Added t.p. in Russian Translation of Works of the Mathematical Institute, Academy of Sciences of the USSR, v. 42. Original title: Teoriya algerifmov. [QA248.M2943 Dartmouth College library. U.S. Dept. of Commerce, Office of Technical Services, number OTS 60-51085.]
- Minsky, Marvin (1967). Computation: Finite and Infinite Machines (edisi ke-First). Prentice-Hall, Englewood Cliffs, NJ. ISBN 0-13-165449-7. Minsky expands his "...idea of an algorithm—an effective procedure..." in chapter 5.1 Computability, Effective Procedures and Algorithms. Infinite machines."
- Post, Emil (1936). "Finite Combinatory Processes, Formulation I". The Journal of Symbolic Logic. 1 (3): 103–105. doi:10.2307/2269031. JSTOR 2269031. Reprinted in The Undecidable, p. 289ff. Post defines a simple algorithmic-like process of a man writing marks or erasing marks and going from box to box and eventually halting, as he follows a list of simple instructions. This is cited by Kleene as one source of his "Thesis I", the so-called Church–Turing thesis.
- Rogers, Jr, Hartley (1987). Theory of Recursive Functions and Effective Computability. The MIT Press. ISBN 0-262-68052-1 (pbk.) Periksa nilai: invalid character
|isbn=
(bantuan). - Rosser, J.B. (1939). "An Informal Exposition of Proofs of Godel's Theorem and Church's Theorem". Journal of Symbolic Logic. 4. Reprinted in The Undecidable, p. 223ff. Herein is Rosser's famous definition of "effective method": "...a method each step of which is precisely predetermined and which is certain to produce the answer in a finite number of steps... a machine which will then solve any problem of the set with no human intervention beyond inserting the question and (later) reading the answer" (p. 225–226, The Undecidable)
- Scott, Michael L. (2009). Programming Language Pragmatics (edisi ke-3rd). Morgan Kaufmann Publishers/Elsevier. ISBN 978-0-12-374514-9.
- Sipser, Michael (2006). Introduction to the Theory of Computation. PWS Publishing Company. ISBN 0-534-94728-X.
- Stone, Harold S. (1972). Introduction to Computer Organization and Data Structures (edisi ke-1972). McGraw-Hill, New York. ISBN 0-07-061726-0. Cf. in particular the first chapter titled: Algorithms, Turing Machines, and Programs. His succinct informal definition: "...any sequence of instructions that can be obeyed by a robot, is called an algorithm" (p. 4).
- Tausworthe, Robert C (1977). Standardized Development of Computer Software Part 1 Methods. Englewood Cliffs NJ: Prentice-Hall, Inc. ISBN 0-13-842195-1.
- Turing, Alan M. (1936–7). "On Computable Numbers, With An Application to the Entscheidungsproblem". Proceedings of the London Mathematical Society, Series 2. 42: 230–265. doi:10.1112/plms/s2-42.1.230. . Corrections, ibid, vol. 43(1937) pp. 544–546. Reprinted in The Undecidable, p. 116ff. Turing's famous paper completed as a Master's dissertation while at King's College Cambridge UK.
- Turing, Alan M. (1939). "Systems of Logic Based on Ordinals". Proceedings of the London Mathematical Society, Series 2. 45: 161–228. doi:10.1112/plms/s2-45.1.161. Reprinted in The Undecidable, p. 155ff. Turing's paper that defined "the oracle" was his PhD thesis while at Princeton USA.
- United States Patent and Trademark Office (2006), 2106.02 **>Mathematical Algorithms: 2100 Patentability, Manual of Patent Examining Procedure (MPEP). Latest revision August 2006
Referensi tambahan
- Bolter, David J. (1984). Turing's Man: Western Culture in the Computer Age (edisi ke-1984). The University of North Carolina Press, Chapel Hill NC. ISBN 0-8078-1564-0., ISBN 0-8078-4108-0 pbk.
- Dilson, Jesse (2007). The Abacus (edisi ke-(1968,1994)). St. Martin's Press, NY. ISBN 0-312-10409-X., ISBN 0-312-10409-X (pbk.)
- van Heijenoort, Jean (2001). From Frege to Gödel, A Source Book in Mathematical Logic, 1879–1931 (edisi ke-(1967)). Harvard University Press, Cambridge, MA. ISBN 0-674-32449-8., 3rd edition 1976[?], ISBN 0-674-32449-8 (pbk.)
- Hodges, Andrew (1983). Alan Turing: The Enigma (edisi ke-(1983)). Simon and Schuster, New York. ISBN 0-671-49207-1., ISBN 0-671-49207-1. Cf. Chapter "The Spirit of Truth" for a history leading to, and a discussion of, his proof.
Bacaan lebih lanjut
- Jean Luc Chabert (1999). A History of Algorithms: From the Pebble to the Microchip. Springer Verlag. ISBN 978-3-540-63369-3.
- Algorithmics.: The Spirit of Computing. Addison-Wesley. 2004. ISBN 978-0-321-11784-7.
- Knuth, Donald E. (2000). Selected Papers on Analysis of Algorithms. Stanford, California: Center for the Study of Language and Information.
- Knuth, Donald E. (2010). Selected Papers on Design of Algorithms. Stanford, California: Center for the Study of Language and Information.
- Berlinski, David (2001). The Advent of the Algorithm: The 300-Year Journey from an Idea to the Computer. Harvest Books. ISBN 978-0-15-601391-8.
- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein (2009). Introduction To Algorithms, Third Edition. MIT Press. ISBN 978-0262033848.
Tautan luar
- Hazewinkel, Michiel, ed. (2001) [1994], "Algorithm", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
- Algorithms di Curlie (dari DMOZ)
- (Inggris) Weisstein, Eric W. "Algorithm". MathWorld.
- Dictionary of Algorithms and Data Structures—National Institute of Standards and Technology
- Algorithms and Data Structures by Dr Nikolai Bezroukov
- Algorithm repositories
- The Stony Brook Algorithm Repository—State University of New York at Stony Brook
- Netlib Repository—University of Tennessee and Oak Ridge National Laboratory
- Collected Algorithms of the ACM—Association for Computing Machinery
- The Stanford GraphBase—Stanford University
- Combinatorica—University of Iowa and State University of New York at Stony Brook
- Library of Efficient Datastructures and Algorithms (LEDA)—previously from Max-Planck-Institut für Informatik
- Archive of Interesting Code
- A semantic wiki to collect, categorize and relate all algorithms and data structures
- Lecture notes
- Algorithms Course Materials. Jeff Erickson. University of Illinois.
- Community