Kekisi (tatanan)

struktur abstrak yang dipelajari dalam subdisiplin matematika dari teori order dan aljabar abstrak

Kisi adalah struktur abstrak digunakan dalam subdisiplin matematika dari teori order dan aljabar abstrak. Himpunan terurut sebagian di mana dua elemen memiliki supremum (juga disebut batas atas terkecil atau gabung) dan infimum (juga disebut batas bawah terbesar atau bertemu). Contoh dari bilangan asli, dengan diurutkan oleh pembagian, dimana supremum adalah kelipatan persekutuan terkecil dan infimum adalah pembagi persekutuan terbesar.

Kisi dikarakterisasi sebagai struktur aljabar menggunakan aksioma atik identitas. Karena kedua definisi tersebut ekuivalen, teori kisi yang menggunakan teori urutan dan aljabar universal. Semikisi salah satu bagian kisi adalah aljabar Heyting dan Boolean. Struktur "kisi" digunakan teori-urutan serta deskripsi aljabar.

Kisi sebagai himpunan berurutan sebagian

sunting

Jika (L, ≤) adalah himpunan berurutan sebagian (pohimpunan), dan SL adalah himpunan bagian arbitrer, maka elemen uL adalah sebagai batas atas dari S jika su untuk sS. Batas atas u dari S sebagai batas bagian atas, atau gabung, supremum, jika ux untuk batas atas x dari S. Satu himpunan dari batad atas terkecil, tidak lebih dari satu. Dualitas lL sebagai batas bawah dari S jika ls untuk sS. Batad bawah l dari S sebagai batas bawah terbesar, atau bertemu, minimal, jika xl untuk batad bawah x dari S.

Rangkaian urutan sebagian (L, ≤) disebut gabung-semikisi jika himpunan bagian dua elemen {a, b} ⊆ L memiliki gabungan (yaitu batas atas terkecil), dan disebut bertemu-semikisi jika himpunan bagian dua elemen memiliki pertemuan (yaitu batas bawah terbesar), dilambangkan dengan ab dan ab. (L, ≤) disebut kisi jika gabungan dan bertemu-semikisi. Definisi ∨ dan ∧ adalah operasi biner. Kedua operasi tersebut monoton dengan urutan: a1a2 dan b1b2 dengan a1b1a2b2 dan a1b1a2b2.

Argumen induksi bahwa himpunan bagian hingga tidak kosong dari kisi memiliki batas atas terkecil dan batas bawah terbesar. Dengan asumsi tambahan, kesimpulan lebih lanjut dimungkinkan; lihat Kompleknes (teori order) untuk diskusi lebih lanjut tentang subjek ini. Bagaimana dapat mengubah definisi di atas dalam kaitannya dengan keberadaan koneksi Galois diantara himpunan terurut sebagian terkait, pendekatan khusus untuk teori kategori pendekatan kisi, dan untuk analisis konsep formal.

Batas kisi adalah kisi dengan elemen terbesar (juga disebut elemen maksimum, atau atas, dan dilambangkan dengan 1, atau dengan  ) dan elemen terkecil (juga disebut minimum, atau bawah, dilambangkan dengan 0 atau dengan  ), yaitu

0 ≤ x ≤ 1 untuk x di L.

Kisi dibatasi dengan menambahkan elemen buatan terbesar dan terkecil, dan kisi hingga tidak kosong dibatasi, dengan gabungan (berurutan dengan gabung dan bertemu) dari semua elemen, dilambangkan dengan   (berurutan  ) dimana  .

Himpunan berurutan sebagian adalah kisi hingga jika dan hanya jika himpunan elemen hingga (termasuk himpunan kosong) yaitu gabungan dan pertemuan. Untuk elemen x dari sebuah poset tirivial (adalah prinsip vacuous)   dan  , dan elemen poset adalah batas atas dan batas bawah dari himpunan kosong. Gabungan dari himpunan kosong adalah elemen terkecil  , dan bertemu himpunan kosong adalah elemen terbesar  . Asosiatif dan komutatifitas bertemu dan gabungan: gabungan dari gabungan himpunan berhingga sama dengan gabungan himpunan, dan dua kali, pertemuan gabungan himpunan hingga sama dengan pertemuan pertemuan himpunan, yaitu, untuk himpunan bagian hingga A dan B dari poset L,

 

dan

 

B adalah himpunan kosong,

 

dan

 

konsisten dengan  .

Elemen kisi y dengan elemen penutup x, jika y > x, maka z adalah y > z > x.[1]

Kisi sebagai struktur aljabar

sunting

Kisi umum

sunting

Struktur aljabar  , dari himpunan   dan dua biner, operasi komutatif dan asosiatif  , dan  ,   adalah kisi jika identitas aksiomatik berikut untuk elemen   disebut hukum absorpsi.

 
 

Dua identitas berikut sebagai aksioma, keduanya menggunakan dua hukum absorpsi.[note 1] Maka ini disebut hukum idempoten.

 
 

Aksioma menggunakan   dan   adalah semikisi. Hukum absorpsi, dari aksioma di atas di mana keduanya bertemu dan bergabung, membedakan kisi dari sembarang struktur semikisi dan memastikan bahwa dua semikisi berinteraksi dengan tepat. Secara khusus, setiap semikisi adalah dualitas dari yang lain.

Kisi hingga

sunting

Kisi hingga adalah struktur aljabar dengan bentuk   dan   adalah kisi   (kisi bawah) dari elemen identitas untuk operasi penggabungan  , dan   (bagian atas kisi) adalah elemen identitas untuk operasi meet  .

 
 

Lihat semikisi untuk informasi lebih lanjut.

Koneksi ke struktur aljabar lainnya

sunting

Kisi memiliki beberapa koneksi ke relasi struktur aljabar grup. Karena bertemu dan bergabung dengan komute dan asosiasi, kisi dapat dianggap terdiri dari dua komutatif semigrup yang memiliki domain yang sama. Untuk kisi hingga, semigrup sebenarnya adalah komutatif monoid. Hukum absorpsi adalah identitas penentu dalam teori kisi.

Dengan komutatifitas, asosiatif, dan idempotensi, gabung dan bertemu sebagai operasi pada himpunan hingga tidak kosong, bukan pada relasi elemen. Dalam kisi hingga, gabungan dan pertemuan dari himpunan kosong juga mendefinisikan (sebagai   dan  ). Hal ini membuat kisi hingga dari kisi umum, dan banyak penulis mengharuskan semua kisi menggunakan batas.

Interpretasi aljabar kisi antara peran penting dalam aljabar universal.

Relasi antara dua definisi

sunting

Kisi teori-orde antara dua operasi biner ∨ dan ∧. Karena hukum komutatif, asosiatif dan absorpsi dengan diverifikasi untuk operasi, maka (L, ∨, ∧) dalam kisi dalam arti aljabar.

Kebalikannya, dengan kisi ditentukan aljabar (L, ∨, ∧), satu menentukan urutan parsial ≤ di L dengan

ab jika a = ab, atau
ab jika b = ab,

untuk elemen a dan b dari L. Hukum absorpsi bahwa kedua definisi adalah ekuivalen:

a = ab dengan b = b ∨ (ba) = (ab) ∨ b = ab

dan dualitas untuk arah lain.

Relasi ≤ digunakan untuk mendefinisikan urutan parsial di mana biner bertemu dan bergabung diberikan melalui operasi asli ∨ dan ∧.

Karena dua definisi kisi adalah ekuivalen, dengan menggunakan aspek dari kedua definisi tersebut dengan tujuan digunakan.

Contoh

sunting
  • Untuk himpunan A, himpunan bagian dari A (disebut himpunan pangkat dari A) urutan himpunan bagian inklusi untuk kisi hingga A dengan himpunan kosong. Himpunan perpotongan dan satuan menafsirkan bertemu dan bergabung (lihat Gambar 1).
  • Untuk himpunan A, himpunan bagian hingga dari A, diurutkan dengan penyertaan, juga merupakan kisi, dan dibatasi jika dan hanya jika A hingga.
  • Untuk himpunan A, diurutkan dengan partisi adalah kisi (lihat Gambar 3).
  • Bilangan bulat positif dalam urutan membentuk kisi, di bawah operasi "min" dan "max". 1 bagian bawah; tidak memiliki bagian atas (lihat Gambar 4).
  • Persegi Kartesius dari bilangan asli, diurutkan sehingga (a, b) ≤ (c, d) jika ac dan bd. Relasi (0, 0) adalah elemen bawah; tidak memiliki bagian atas (lihat Gambar 5).
  • Bilangan asli dari bentuk kisi di bawah operasi pembagi persekutuan terbesar dan kelipatan persekutuan terkecil, dengan persekutuan sebagai relasi urutan: ab jika a membagi b maka 1 bagian bawah; 0 teratas. Gambar 2 menunjukkan subkisi hingga.
  • Kisi kompleks adalah kisi hingga (spesifik). Kelas dari praktisi contoh.
  • Himpunan elemen kompak dari aritmetika kisi kompleks adalah kisi dengan elemen terkecil, dimana operasi kisi dengan membatasi operasi kisi aritmetika. Sifat khusus yang membedakan kisi aritmetika dari kisi aljabar, dimana pemadatannya hanya membentuk gabungan-semikisi. Kedua kelas kisi kompleks dipelajari di teori domain.

Contoh kisi lebih lanjut untuk sifat tambahan yang dibahas di bawah ini.

Contoh non-kisi

sunting
 
Gambar 8: Poset non-kisi: a dan b memiliki batas bawah yang sama 0, d, g, h, dan i, tetapi tidak memiliki batas bawah terbesar.
 
Gambar 7: Poset non-kisi: b dan c memiliki batas atas yang sama d, e, dan f, tidak yang merupakan batas atas terkecil .
 
Gambar 6: Poset non-kisi: c dan d tidak memiliki batas atas yang sama.

Sebagian besar rangkaian yang diurutkan sebagian bukanlah kisi, termasuk berikut ini.

  • Poset diskrit, artinya poset xy dengan x = y, adalah kisi jika dan hanya jika memiliki banyak satu elemen. Secara khusus, poset diskrit dua elemen bukanlah kisi.
  • Maka himpunan {1, 2, 3, 6} sebagian diurutkan berdasarkan pembagian adalah kisi, himpunan {1, 2, 3} jadi bukan kisi karena urutan 2, 3 tidak memiliki gabungan; maka, 2, 3 tidak memiliki pertemuan {2, 3, 6}.
  • Himpunan {1, 2, 3, 12, 18, 36} sebagian urutan pembagian bukan kisi. Bagian elemen memiliki batas atas dan batas bawah, tetapi 2, 3 memiliki tiga batas atas, yaitu 12, 18, dan 36, tidak memiliki terkecil dari ketiga yang dapat dibagi. Bagian 12, 18 memiliki tiga batas bawah, yaitu 1, 2, dan 3, tidak memiliki bagian terbesar dari ketiganya yang dapat dibagi (2 dan 3 tidak saling membagi).

Morfisme kisi

sunting
 
Gambar 9: Peta monotonik f antara kisi gabungan atau pertemuan, karena f(u) ∨ f(v) = u′ ∨ u = u′ ≠ 1′ = f(1) = f(uv) dan f(u) ∧ f(v) = u′ ∧ u = u′ ≠ 0′ = f(0) = f(uv).

Gagasan tentang morfisme antara dua kisi mengalir dengan mudah dari definisi aljabar atas. Maka dua kisi (L, ∨L, ∧L) dan (M, ∨M, ∧M), kisi homomorfisme dari L menjadi M adalah fungsi f : LM untuk a, bL:

f(aL b) = f(a) ∨M f(b), dan
f(aL b) = f(a) ∧M f(b).

Jadi f adalah homomorfisme dari dua semikisi. Jika kisi dengan struktur. Secara khusus, homomorfisme kisi berbatas (biasanya disebut "homomorfisme kisi") f antara dua kisi berbatas L dan M memiliki sifat berikut:

f(0L) = 0M , and
f(1L) = 1M .

Dalam rumus teori-ordo, bahwa homomorfisme kisi adalah fungsi pengawetan pertemuan dan penggabungan biner. Untuk kisi berbatas, penggunaan elemen terkecil dan terbesar gabungan dan pertemuan himpunan kosong.

Homomorfisme kisi monoton dengan relasi keteraturan terkait; lihat Fungsi pemeliharaan batas. Kebalikannya tidak benar: monotonisitas tidak menggunakan untuk bertemu dan bergabung (lihat Gambar 9), meskipun pemelihara order bijeksi adalah homomorfisme dari fungsi pembalikan.

Maka   dan   antara dua kisi dengan 0 dan 1. Homomorfisme dari   ke   disebut separating-0,1 jika dan hanya jika   (  yaitu 0) dan   (  yaitu 1).

Lihat pula

sunting

Aplikasi yang menggunakan teori kisi

sunting

Perhatikan bahwa dalam banyak aplikasi, set hanya berupa kisi parsial: tidak elemen memiliki pertemuan atau penggabungan.

Catatan

sunting
  1. ^ aa = a ∨ (a ∧ (aa)) = a, dan dua kali untuk hukum idempoten lainnya.Dedekind, Richard (1897), "Über Zerlegungen von Zahlen durch ihre grössten gemeinsamen Teiler", Braunschweiger Festschrift: 1–40 .

Referensi

sunting
  1. ^ Grätzer 1996, hlm. 52.

Monographs available free online:

Elementary texts recommended for those with limited mathematical maturity:

  • Donnellan, Thomas, 1968. Lattice Theory. Pergamon.
  • Grätzer, George, 1971. Lattice Theory: First concepts and distributive lattices. W. H. Freeman.

The standard contemporary introductory text, somewhat harder than the above:

Advanced monographs:

On free lattices:

On the history of lattice theory:

On applications of lattice theory:

  • Garrett Birkhoff (1967). James C. Abbot, ed. What can Lattices do for you?. Van Nostrand.  Table of contents

Pranala luar

sunting