Pengguna:Klasüo/bak pasir/khusus

Dalam Disquisitiones Arithmeticae (1801) Gauss membuktikan teorema faktorisasi unik [1] dan menggunakannya untuk membuktikan hukum timbal balik kuadratik.[2]

Dalam matematika, teorema dasar aritmetika, disebut juga teorema faktorisasi unik dan teorema faktorisasi prima menyatakan bahwa setiap bilangan bulat lebih besar dari 1 dapat direpresentasikan secara unik sebagai produk dari bilangan prima, urutan faktor hingga.[3][4][5] Misalnya,

Teorema mengatakan dua hal tentang contoh ini: pertama, bahwa 1200 bisa direpresentasikan sebagai produk bilangan prima, dan kedua, tidak peduli bagaimana hal ini dilakukan, akan selalu ada tepat empat ke-2, satu ke-3, dua ke-5, dan tidak ada bilangan prima lainnya dalam produk.

Persyaratan bahwa faktor-faktor menjadi prima diperlukan: faktorisasi yang mengandung bilangan komposit mungkin tak unik (misalnya, ).

Teorema ini adalah salah satu alasan mengapa 1 bukan sebagai bilangan prima: jika 1 adalah bilangan prima, maka faktorisasi menjadi bilangan prima tak unik; misalnya

Teorema ini digeneralisasikan ke struktur aljabar lainnya, khususnya untuk gelanggang polinomial di atas medan. Struktur ini disebut ranah faktorisasi unik.

Versi asli Euklides

sunting

Buku VII, proposisi 30, 31 dan 32, dan Buku IX, proposisi 14 dari Elemen Euklides pada dasarnya adalah pernyataan dan bukti teorema dasar.

Jika dua angka dengan mengalikan satu sama lain membuat beberapa nomor, dan setiap bilangan prima mengukur produk, itu akan juga mengukur salah satu nomor asli.

— Euklides, Elemen Buku VII, Proposisi 30

(Dalam terminologi modern: jika sebuah bilangan prima p membagi hasil kali ab, lalu p membagi a atau b atau keduanya.) Proposisi 30 disebut sebagai lema Euklides, dan merupakan kunci dalam pembuktian teorema dasar aritmetika.

Setiap bilangan komposit diukur dengan beberapa bilangan prima.

— Euklides, Elemen Buku VII, Proposisi 31

(Dalam terminologi modern: setiap bilangan bulat lebih besar dari satu dibagi secara merata oleh beberapa bilangan prima.) Proposisi 31 dibuktikan langsung oleh penurunan tak hingga.

Setiap nomor baik prima atau diukur dengan beberapa bilangan prima.

— Euklides, Elemen Buku VII, Proposisi 32

Proposisi 32 diturunkan dari proposisi 31, dan membuktikan bahwa dekomposisi itu mungkin.

Jika suatu bilangan terkecil yang diukur dengan bilangan prima, itu tidak akan diukur dengan apapun bilangan prima lainnya kecuali yang semula mengukurnya.

— Euklides, Elemen Buku IX, Proposisi 14

(Dalam terminologi modern: kelipatan persekutuan terkecil dari beberapa bilangan prima bukanlah kelipatan dari bilangan prima lainnya.) Buku IX, proposisi 14 diturunkan dari Buku VII, proposisi 30, dan membuktikan sebagian bahwa dekomposisi itu unik – sebuah poin yang secara kritis dicatat oleh André Weil.[6] Memang, dalam proposisi ini semua eksponennya sama dengan satu, jadi tidak ada yang dikatakan untuk kasus umum.

Pasal 16 dari Gauss Disquisitiones Arithmeticae adalah pernyataan dan bukti modern awal yang menggunakan aritmetika modular.[1]

Aplikasi

sunting

Representasi kanonik dari bilangan bulat positif

sunting

Setiap bilangan bulat positif n > 1 dapat direpresentasikan dengan tepat satu cara sebagai hasil kali pangkat prima:

 

dimana p1 < p2 < ... < pk adalah bilangan prima dan ni adalah bilangan bulat positif. Representasi ini biasanya diperluas ke semua bilangan bulat positif, termasuk 1, dengan konvensi bahwa produk kosong sama dengan 1 (produk kosong sesuai dengan k = 0).

Representasi ini disebut representasi kanonik[7] dari n, atau bentuk standar[8][9] dari n. Contohnya,

999 = 33×37,
1000 = 23×53,
1001 = 7×11×13.

Faktor p0 = 1 dapat dimasukkan tanpa mengubah nilai n (misalnya, 1000 = 23×30×53). Faktanya, bilangan bulat positif apa pun dapat direpresentasikan secara unik sebagai produk tak hingga yang diambil dari semua bilangan prima positif:

 

dimana sebuah bilangan berhingga dari ni adalah bilangan bulat positif, dan sisanya nol. Membiarkan eksponen negatif memberikan bentuk kanonik untuk bilangan rasional positif.

Operasi aritmetika

sunting

Representasi kanonik dari produk, faktor persekutuan terbesar (GCD) atau (FPB), dan kelipatan persekutuan terkecil (LCM) atau (KPK) dari dua bilangan a dan b dapat dinyatakan secara sederhana dalam bentuk representasi kanonik dari a dan b itu sendiri:

 

Namun, faktorisasi bilangan bulat, terutama bilangan terbesar, jauh lebih sulit dibanding menghitung produk, FPB, atau KPK. Jadi formula ini memiliki penggunaan yang terbatas dalam praktiknya.

Fungsi aritmetika

sunting

Banyak fungsi aritmetika didefinisikan menggunakan representasi kanonik. Secara khusus, nilai fungsi tambahan dan perkalian ditentukan oleh nilainya pada pangkat bilangan prima.

Pembuktiannya menggunakan lema Euklides (Elemen VII, 30): Jika suatu prima membagi hasil kali dua bilangan bulat, maka harus membagi setidaknya satu dari bilangan bulat ini.

Eksistensi

sunting

It must be shown that every integer greater than 1 is either prime or a product of primes. First, 2 is prime. Then, by strong induction, assume this is true for all numbers greater than 1 and less than n. If n is prime, there is nothing more to prove. Otherwise, there are integers a and b, where n = a b, and 1 < ab < n. By the induction hypothesis, a = p1 p2 ⋅⋅⋅ pj and b = q1 q2 ⋅⋅⋅ qk are products of primes. But then n = a b = p1 p2 ⋅⋅⋅ pj q1 q2 ⋅⋅⋅ qk is a product of primes.

Uniqueness

sunting

Suppose, to the contrary, there is an integer that has two distinct prime factorizations. Let n be the least such integer and write n = p1 p2 ... pj = q1 q2 ... qk, where each pi and qi is prime. We see that p1 divides q1 q2 ... qk, so p1 divides some qi by Euclid's lemma. Without loss of generality, say p1 divides q1. Since p1 and q1 are both prime, it follows that p1 = q1. Returning to our factorizations of n, we may cancel these two factors to conclude that p2 ... pj = q2 ... qk. We now have two distinct prime factorizations of some integer strictly smaller than n, which contradicts the minimality of n.

Uniqueness without Euclid's lemma

sunting

The fundamental theorem of arithmetic can also be proved without using Euclid's lemma.[10] The proof that follows is inspired by Euclid's original version of the Euclidean algorithm.

Assume that   is the smallest positive integer which is the product of prime numbers in two different ways. Incidentally, this implies that  , if it exists, must be a composite number greater than  . Now, say

 

Every   must be distinct from every   Otherwise, if say   then there would exist some positive integer   that is smaller than s and has two distinct prime factorizations. One may also suppose that   by exchanging the two factorizations, if needed.

Setting   and   one has   Also, since   one has   It then follows that

 

As the positive integers less than s have been supposed to have a unique prime factorization,   must occur in the factorization of either   or Q. The latter case is impossible, as Q, being smaller than s, must have a unique prime factorization, and   differs from every   The former case is also impossible, as, if   is a divisor of   it must be also a divisor of   which is impossible as   and   are distinct primes.

Therefore, there cannot exist a smallest integer with more than a single distinct prime factorization. Every positive integer must either be a prime number itself, which would factor uniquely, or a composite that also factors uniquely into primes, or in the case of the integer  , not factor into any prime.

Generalizations

sunting

The first generalization of the theorem is found in Gauss's second monograph (1832) on biquadratic reciprocity. This paper introduced what is now called the ring of Gaussian integers, the set of all complex numbers a + bi where a and b are integers. It is now denoted by   He showed that this ring has the four units ±1 and ±i, that the non-zero, non-unit numbers fall into two classes, primes and composites, and that (except for order), the composites have unique factorization as a product of primes.[11]

Similarly, in 1844 while working on cubic reciprocity, Eisenstein introduced the ring  , where       is a cube root of unity. This is the ring of Eisenstein integers, and he proved it has the six units   and that it has unique factorization.

However, it was also discovered that unique factorization does not always hold. An example is given by  . In this ring one has[12]

 

Examples like this caused the notion of "prime" to be modified. In   it can be proven that if any of the factors above can be represented as a product, for example, 2 = ab, then one of a or b must be a unit. This is the traditional definition of "prime". It can also be proven that none of these factors obeys Euclid's lemma; for example, 2 divides neither (1 + −5) nor (1 − −5) even though it divides their product 6. In algebraic number theory 2 is called irreducible in   (only divisible by itself or a unit) but not prime in   (if it divides a product it must divide one of the factors). The mention of   is required because 2 is prime and irreducible in   Using these definitions it can be proven that in any integral domain a prime must be irreducible. Euclid's classical lemma can be rephrased as "in the ring of integers   every irreducible is prime". This is also true in   and   but not in  

The rings in which factorization into irreducibles is essentially unique are called unique factorization domains. Important examples are polynomial rings over the integers or over a field, Euclidean domains and principal ideal domains.

In 1843 Kummer introduced the concept of ideal number, which was developed further by Dedekind (1876) into the modern theory of ideals, special subsets of rings. Multiplication is defined for ideals, and the rings in which they have unique factorization are called Dedekind domains.

There is a version of unique factorization for ordinals, though it requires some additional conditions to ensure uniqueness.

See also

sunting
  • Integer factorizationLua error in Modul:WikidataDescription at line 7: bad argument #1 to 'sub' (string expected, got nil).
  • Prime signatureLua error in Modul:WikidataDescription at line 7: bad argument #1 to 'sub' (string expected, got nil).
  1. ^ a b (Gauss & Clarke 1986, Art. 16)
  2. ^ (Gauss & Clarke 1986, Art. 131)
  3. ^ (Long 1972, hlm. 44)
  4. ^ (Pettofrezzo & Byrkit 1970, hlm. 53)
  5. ^ (Hardy & Wright 2008, Thm 2)
  6. ^ (Weil 2007, hlm. 5): "Bahkan dalam Euclid, kita gagal menemukan pernyataan umum tentang keunikan faktorisasi suatu bilangan bulat menjadi bilangan prima; tentunya dia mungkin telah menyadarinya, tetapi yang dia miliki hanyalah sebuah pernyataan (Eukl.IX.I4) tentang l.c.m. dari sejumlah bilangan prima yang diberikan."
  7. ^ (Long 1972, hlm. 45)
  8. ^ (Pettofrezzo & Byrkit 1970, hlm. 55)
  9. ^ (Hardy & Wright 2008, § 1.2)
  10. ^ Dawson, John W. (2015), Why Prove it Again? Alternative Proofs in Mathematical Practice., Springer, hlm. 45, ISBN 9783319173689 
  11. ^ Gauss, BQ, §§ 31–34
  12. ^ (Hardy & Wright 2008, § 14.6)

References

sunting

The Disquisitiones Arithmeticae has been translated from Latin into English and German. The German edition includes all of his papers on number theory: all the proofs of quadratic reciprocity, the determination of the sign of the Gauss sum, the investigations into biquadratic reciprocity, and unpublished notes.

The two monographs Gauss published on biquadratic reciprocity have consecutively numbered sections: the first contains §§ 1–23 and the second §§ 24–76. Footnotes referencing these are of the form "Gauss, BQ, § n". Footnotes referencing the Disquisitiones Arithmeticae are of the form "Gauss, DA, Art. n".

  • Gauss, Carl Friedrich (1828), Theoria residuorum biquadraticorum, Commentatio prima, Göttingen: Comment. Soc. regiae sci, Göttingen 6 
  • Gauss, Carl Friedrich (1832), Theoria residuorum biquadraticorum, Commentatio secunda, Göttingen: Comment. Soc. regiae sci, Göttingen 7 

These are in Gauss's Werke, Vol II, pp. 65–92 and 93–148; German translations are pp. 511–533 and 534–586 of the German edition of the Disquisitiones.

sunting

Templat:Divisor classes