Relasi ekuivalensi

relasi yang bersifat reflektif, simetris, dan transitif
(Dialihkan dari Relasi ekivalen)

Dalam matematika, relasi ekuivalensi adalah relasi biner yang bersifat reflektif, simetris dan transitif. Relasi "sama dengan" merupakan contoh dasar dari relasi ekuivalensi, di mana untuk sembarang objek a, b, dan c:

  • a = a (sifat reflektif),
  • jika a = b maka b = a (sifat simetris), dan
  • jika a = b dan b = c maka a = c (sifat transitif).
52 relasi ekuivalensi pada himpunan 5-anggota yang digambarkan dengan matriks biner 5x5 (kotak yang berwarna, termasuk yang abu-abu, melambangkan 1; kotak putih melambangkan 0.) Indeks kolom dan baris dari kotak yang berwarna adalah anggota yang berkaitan, sementara warna yang dibedakan, selain abu-abu, mengindikasikan kelas ekuivalensi (masing-masing kotak abu-abu merupakan kelas ekuivalensinya sendiri).

Sebagai akibat dari sifat reflektif, simetris, dan transitif, semua relasi ekuivalensi dapat menghasilkan partisi dari himpunan pendasar menjadi kelas-kelas ekuivalensi yang saling lepas. Dua anggota dari suatu himpunan disebut ekuivalen jika dan hanya jika mereka merupakan anggota kelas ekuivalensi yang sama.

Notasi

sunting

Berbagai notasi digunakan untuk menunjukkan bahwa dua anggota himpunan a dan b bersifat ekuivalen terhadap relasi ekuivalen R; biasanya "a ~ b" dan "ab", yang digunakan ketika R bersifat tersirat, dan variasi "a ~R b", "aR b", atau "aRb" untuk menyebutkan R secara tersurat. Sifat tidak ekuivalen bisa ditulis "ab" atau " ".

Definisi

sunting

Suatu relasi biner ~ pada himpunan X disebut merupakan relasi ekuivalensi jika dan hanya jika bersifat reflektif, simetris dan transitif. Artinya, untuk semua a, b dan c dalam X:

X bersama dengan relasi ~ disebut sebuah setoid. Kelas ekuivalensi dari   di bawah ~, dilambangkan dengan  , didefinisikan sebagai  .

Contoh

sunting

Contoh sederhana

sunting

Anggap himpunan   memiliki relasi ekuivalensi  . Himpunan   dan   adalah kelas ekuivalensi dari relasi ini.

Himpunan dari semua kelas ekuivalensi untuk relasi ini adalah  . Himpunan ini adalah partisi dari himpunan  .

Relasi ekuivalensi

sunting

Relasi-relasi berikut adalah contoh lain dari relasi ekuivalensi:

  • "sama dengan" pada himpunan bilangan. Sebagai contoh,   sama dengan  .[1]
  • "memiliki tanggal ulang tahun yang sama dengan" pada himpunan orang-orang.
  • "kongruen dengan" pada himpunan semua segitiga.
  • "kongruen modulo n dengan" pada bilangan bulat.[1]
  • "Memiliki nilai mutlak yang sama dengan" pada himpunan bilangan real.
  • "Memiliki nilai kosinus yang sama dengan" pada himpunan semua sudut.

Relasi yang bukan ekuivalensi

sunting
  • Relasi "≥" antara dua bilangan real bersifat reflektif dan transitif, namun tidak simetris. Sebagai contoh, 7 ≥ 5 tidak mengakibatkan 5 ≥ 7.
  • Relasi "memiliki faktor pembagi bersama yang lebih besar dari 1 dengan" antara dua bilangan bulat yang lebih besar dari 1, bersifat reflektif dan simetris, namun tidak transitif. Sebagai contoh, bilangan 2 dan 6 sama-sama memiliki faktor bersama yang lebih besar dari 1 (yakni angka 2), bilangan 6 dan 3 juga memiliki bersama yang lebih besar dari 1 (yakni angka 3), tetapi 2 dan 3 tidak memiliki faktor bersama yang lebih besar dari 1.

Kelas ekuivalensi, himpunan hasil bagi, dan partisi

sunting

Anggap  . Ada beberapa definisi

Kelas ekuivalensi

sunting

Sebuah subhimpunan   dari  , dengan   tetap berlaku untuk semua   namun tidak pernah ketika  , disebut sebagai sebuah kelas ekuivalensi   dari  . Anggap   menyatakan kelas ekuivalensi yang berisi elemen  . Semua elemen di   yang saling ekuivalen menjadi anggota pada kelas ekuivalensi yang sama.

Himpunan hasil bagi

sunting

Himpunan semua kelas ekuivalensi   dari  , yang dinyatakan sebagai   , adalah himpunan hasil bagi   dari  . Jika   adalah ruang topologis, ada cara mudah mengubah   menjadi ruang topologis. Lihat ruang hasil bagi untuk detailnya.

Teorema dasar relasi ekuivalensi

sunting

Salah satu hasil penting yang menghubungkan relasi ekuivalensi dan partisi adalah:[2][3][4]

  • Relasi ekuivalensi   pada himpunan   mempartisi himpunan   tersebut.
  • Kebalikannya, untuk setiap partisi himpunan  , terdapat suatu relasi ekuivalensi   yang sesuai pada himpunan  .

Anggap   sebagai partisi dari  . Pada kedua kasus, sebuah himpunan di   adalah kelas ekuivalensi   dari  . Karena setiap elemen di   terletak di tepat satu himpunan di  , dan karena setiap himpunan di   identik ke kelas ekuivalensi   dari  , maka setiap elemen di   terletak di tepat satu kelas ekuivalensi   dari  . Dengan demikian, terdapat bijeksi antara himpunan semua relasi ekuivalensi di   dengan himpunan semua partisi dari  .

Referensi

sunting
  1. ^ a b "7.3: Equivalence Classes". Mathematics LibreTexts (dalam bahasa Inggris). 2017-09-20. Diakses tanggal 2021-02-10. 
  2. ^ Wallace, D. A. R. (1998). Groups, Rings and Fields. Springer-Verlag. hlm. 31. 
  3. ^ Dummit, D. S.; Foote, R. M. (2004). Abstract Algebra (edisi ke-3). John Wiley & Sons. hlm. 3. 
  4. ^ Hrbacek, Karell; Jech, Thomas (1999). Introduction to Set Theory (edisi ke-3). Marcel Dekker. hlm. 29-32. 

Pranala luar

sunting