Teori bilangan transendental


Teori bilangan transendental adalah cabang dari teori bilangan yang menyelidiki bilangan transendental (bilangan yang bukan merupakan solusi dari persamaan polinomial dengan koefisien bilangan bulat), dengan cara kualitatif dan kuantitatif.

Transendensi

sunting

Teorema dasar aljabar menyatakan bahwa jika kita memiliki polinomial bukan nol dengan koefisien bilangan bulat maka polinomial tersebut akan berakar pada bilangan kompleks. Artinya, untuk setiap polinomial P dengan koefisien bilangan bulat akan ada bilangan kompleks α sedemikian rupa sehingga P(α) = 0. Teori transendensi berkaitan dengan pertanyaan sebaliknya: dengan bilangan kompleks α, apakah ada polinomial P dengan koefisien bilangan bulat sehingga P(α) = 0? Jika tidak ada polinomial seperti itu maka bilangan tersebut disebut transendental.

Secara lebih umum, teori ini berhubungan dengan kebebasan aljabar angka. Satu set angka {α12,…,αn} disebut independen aljabar di atas bidang K jika tidak ada polinomial bukan nol P dalam variabel n dengan koefisien dalam K sedemikian rupa sehingga P12,…,αn) = 0. Jadi menghitung jika bilangan tertentu transendental benar-benar merupakan kasus khusus kemerdekaan aljabar di mana n = 1 dan bidang K adalah bidang rasional.

Gagasan terkait adalah apakah ada ekspresi bentuk tertutup untuk sebuah bilangan, termasuk eksponensial dan logaritma serta operasi aljabar. Ada berbagai definisi dari "bentuk tertutup", dan pertanyaan tentang bentuk tertutup seringkali dapat direduksi menjadi pertanyaan tentang transendensi.

Catatan

sunting

Referensi

sunting

Bacaan lebih lanjut

sunting

Templat:Number theory-footer