Ruas dari suatu persamaan

Nomenklatur dalam matematika
Revisi sejak 21 Agustus 2024 00.28 oleh The Winter Lettuce (bicara | kontrib) (Lahirnya halaman "Ruas dari suatu persamaan")
(beda) ← Revisi sebelumnya | Revisi terkini (beda) | Revisi selanjutnya → (beda)

Dalam matematika, ruas kiri dari suatu persamaan adalah ekspresi yang berada di sebelah kiri tanda sama dengan =. Begitu juga sebaliknya, ruas kanan dari suatu persamaan adalah ekspresi yang berada di sebelah kanan tanda sama dengan. Kedua ruas memiliki nilai yang sama, namun diekspresikan dengan cara yang berbeda, sebab kesamaan bersifat simetris.[1]

Secara umum, kedua istilah ini juga berlaku pada ketaksamaan atau pertidaksamaan; ruas kiri adalah apapun yang berada pada sebelah kiri operator perbandingan, dan ruas kanan didefinisikan dengan secara serupa.

Sebagai contoh, dalam persamaan adalah ruas kiri, sedangkan adalah ruas kanan.

Persamaan homogen dan takhomogen

sunting

Dalam menyelesaikan persamaan matematika, terutama sistem persamaan linear, persamaan diferensial, dan persamaan integral, istilah homogen seringkali digunakan untuk persamaan dengan suatu operator linear   pada ruas kiri dan   pada ruas kanan. Sebaliknya, suatu persamaan yang ruas kanannya bukan nol disebut sebagai takhomogen atau nonhomogen, yang memiliki bentuk umum   dengan   adalah suatu fungsi tetap, yang nantinya persamaan di atas akan diselesaikan dengan mencari fungsi   yang memenuhi. Setiap penyelesaian dari persamaan takhomogen dapat dijumlahkan dengan penyelesaian dari persamaan homogen, dan hasil penjumlahannya juga termasuk penyelesaian.

Misalnya dalam fisika matematis, persamaan homogen dapat diartikan sebagai teori fisika yang dirumuskan pada suatu ruang hampa udara, sedangkan persamaan takhomogennya meminta solusi yang lebih 'realistis' dengan beberapa materi, atau partikel bermuatan.

Sintaks

sunting

Secara lebih abstrak, saat menggunakan notasi infiks   suku   adalah ruas kiri dan   adalah ruas kanan dari operator  .

Lihat juga

sunting

Referensi

sunting
  1. ^ Engineering Mathematics, John Bird, p65: definition and example of abbreviation