Sifat komutatif
Dalam matematika, suatu operasi biner memiliki sifat komutatif jika mengubah urutan operan tidak mengubah hasilnya. Ini adalah sifat fundamental dari banyak operasi biner, dan banyak pembuktian matematika bergantung pada sifat ini. Sifat ini paling dikenal sebagai nama sifat yang mengatakan "3 + 4 = 4 + 3" atau "2 × 5 = 5 × 2". Sifat ini juga dapat digunakan dalam situasi yang lebih rumit. Nama ini diperlukan karena ada operasi, seperti pembagian dan pengurangan, yang tidak memilikinya (misalnya, "3 − 5 ≠ 5 − 3"); operasi semacam itu tidak bersifat komutatif, dan demikian disebut sebagai operasi nonkomutatif. Gagasan bahwa operasi sederhana, seperti perkalian dan penjumlahan bilangan, bersifat komutatif telah diasumsikan secara implisit selama bertahun-tahun. Dengan demikian, properti ini tidak dinamai sampai abad ke-19, ketika matematika mulai menjadi formal.[1][2] Sifat yang terkait ada untuk relasi biner; suatu relasi biner dikatakan simetris jika relasi berlaku terlepas dari urutan operannya; misalnya, kesamaan bersifat simetris karena dua objek matematika yang sama adalah sama terlepas dari urutannya.[3]
Penggunaan umum
Properti komutatif (atau hukum komutatif ) adalah properti yang umumnya terkait dengan operasi biner dan fungsi. Jika properti komutatif berlaku untuk sepasang elemen di bawah operasi biner tertentu, maka kedua elemen tersebut dikatakan ngelaju di bawah operasi.
Definisi Matematika
Istilah "komutatif" digunakan dalam beberapa pengertian terkait.[4][5]
- Operasi biner pada himpunan S disebut komutatif jika:
- Seseorang mengatakan bahwa x perjalanan dengan y di bawah jika:
- Fungsi biner disebut komutatif jika:
Contoh
Operasi komutatif dalam kehidupan sehari-hari
- Mengenakan kaus kaki menyerupai operasi pergantian karena mengenakan kaus kaki terlebih dahulu tidaklah penting. Bagaimanapun, hasilnya (memakai kedua kaus kaki), adalah sama. Sebaliknya, mengenakan pakaian dalam dan celana panjang tidak bersifat komutatif.
- Komutatifitas penambahan diamati saat membayar barang dengan uang tunai. Terlepas dari urutan penyerahan tagihan, mereka selalu memberikan jumlah yang sama.
Operasi komutatif dalam matematika
Dua contoh operasi biner komutatif yang terkenal:[4]
- Penambahan dari bilangan real bersifat komutatif, karena
- Misalnya 4 + 5 = 5 + 4, karena ekspresi sama dengan 9.
- Perkalian dari bilangan real adalah komutatif, karena
- Misalnya, 3 × 5 = 5 × 3, karena kedua ekspresi sama dengan 15.
- Sebagai konsekuensi langsung dari ini, itu juga berlaku bahwa ekspresi pada bentuk y% dari z dan y% dari z% adalah komutatif untuk semua bilangan real y dan z.[6] Misalnya 64% dari 50 = 50% dari 64, karena kedua ekspresi sama dengan 32, dan 30% dari 50% = 50% dari 30%, karena kedua ekspresi tersebut sama dengan 15%.
- Beberapa biner fungsi kebenaran juga komutatif, karena tabel kebenaran untuk fungsi-fungsinya sama ketika seseorang mengubah urutan operan.
- Misalnya, fungsi biconditional logis p ↔ q ekivalen dengan q ↔ p. Fungsi ini juga ditulis sebagai p IFF q, atau sebagai p ≡ q, atau sebagai Epq.
- Bentuk terakhir adalah contoh notasi paling ringkas dalam artikel tentang fungsi kebenaran, yang mencantumkan enam belas kemungkinan fungsi kebenaran biner yang delapan diantaranya adalah komutatif: Vpq = Vqp; Apq (ATAU) = Aqp; Dpq (NAND) = Dqp; Epq (IFF) = Eqp; Jpq = Jqp; Kpq (DAN) = Kqp; Xpq (MAUPUN) = Xqp; Opq = Oqp.
- Contoh lebih lanjut dari operasi biner komutatif termasuk penambahan dan perkalian bilangan kompleks, penjumlahan dan perkalian skalar dari vektor, dan persimpangan dan persatuan dari himpunan.
Operasi nonkomutatif dalam kehidupan sehari-hari
- Rangkaian, tindakan menggabungkan string karakter bersama-sama, adalah operasi noncommutative. Sebagai contoh,
- EA + T = EAT ≠ TEA = T + EA
- Mencuci dan mengeringkan pakaian menyerupai operasi noncommutative; pencucian dan kemudian pengeringan menghasilkan hasil yang sangat berbeda dengan pengeringan dan kemudian pencucian.
- Memutar buku 90 ° di sekitar sumbu vertikal kemudian 90 ° di sekitar sumbu horizontal menghasilkan orientasi yang berbeda dibandingkan saat rotasi dilakukan dalam urutan yang berlawanan.
- Liku-liku dari Kubus Rubik tidak komunikatif. Ini dapat dipelajari dengan menggunakan teori grup.
- Proses berpikir bersifat nonkomutatif: Seseorang mengajukan pertanyaan (A) dan kemudian pertanyaan (B) dapat memberikan jawaban yang berbeda untuk setiap pertanyaan daripada yang ditanyakan orang pertama (B) dan kemudian (A), karena mengajukan pertanyaan dapat mengubah keadaan pikiran orang tersebut.
- Tindakan berpakaian bisa komutatif atau non-komutatif, tergantung pada itemnya. Mengenakan pakaian dalam dan pakaian biasa tidak bersifat komutatif. Mengenakan kaus kaki kiri dan kanan bersifat komutatif.
- Mengocok setumpuk kartu tidak bersifat komutatif. Diberikan dua cara, A dan B, untuk mengocok setumpuk kartu, melakukan A terlebih dahulu dan kemudian B secara umum tidak sama dengan melakukan B terlebih dahulu dan kemudian A.
Operasi nonkomutatif dalam matematika
Beberapa operasi biner nonkomutatif:[7]
Pembagian dan pengurangan
Pembagian adalah nonkomutatif, sejak .
Pengurangan bersifat nonkomutatif, karena . Namun itu diklasifikasikan lebih tepatnya sebagai anti-komutatif, karena .
Fungsi kebenaran
Beberapa fungsi kebenaran adalah nonkomutatif, karena tabel kebenaran untuk fungsi berbeda ketika seseorang mengubah urutan operan. Misalnya, tabel kebenaran untuk (A ⇒ B) = (¬A ∨ B) dan (B ⇒ A) = (A ∨ ¬B) adalah
A B A ⇒ B B ⇒ A F F T T F T T F T F F T T T T T
Komposisi fungsi fungsi linier
Komposisi fungsi dari fungsi linier dari bilangan real ke bilangan real hampir selalu nonkomutatif. Misalnya, misalkan dan . Kemudian
dan
Ini juga berlaku lebih umum untuk linier dan transformasi affine dari ruang vektor ke dirinya sendiri (lihat di bawah untuk representasi Matriks).
Perkalian matriks
Matriks perkalian matriks kuadrat hampir selalu nonkomutatif, misalnya:
Produk vektor
Produk vektor (atau perkalian silang) dari dua vektor dalam tiga dimensi adalah anti-komutatif; yaitu, b × a = −(a × b).
Sejarah dan etimologi
Rekaman penggunaan implisit dari properti komutatif kembali ke zaman kuno. Para Mesir ian menggunakan properti komutatif dari perkalian untuk menyederhanakan komputasi produk.[8][9] Euklides diketahui telah mengasumsikan properti komutatif perkalian dalam bukunya Elemen .[10] Penggunaan formal properti komutatif muncul pada akhir abad ke-18 dan awal abad ke-19, ketika ahli matematika mulai mengerjakan teori fungsi. Saat ini properti komutatif adalah properti terkenal dan dasar yang digunakan di sebagian besar cabang matematika.
Penggunaan istilah komutatif yang tercatat pertama kali dalam sebuah memoar oleh François Servois pada tahun 1814,[1][11] yang menggunakan kata komutatif saat mendeskripsikan fungsi yang memiliki apa yang sekarang disebut properti komutatif. Kata tersebut merupakan kombinasi dari kata Perancis commuter yang berarti "mengganti atau mengganti" dan sufiks -ative yang berarti "cenderung ke" sehingga kata tersebut secara harfiah berarti "cenderung mengganti atau beralih". Istilah tersebut kemudian muncul dalam bahasa Inggris pada tahun 1838[2] dalam artikel Duncan Farquharson Gregory berjudul "Tentang sifat sebenarnya dari aljabar simbolik" yang diterbitkan pada tahun 1840 di Transaksi Royal Society of Edinburgh.[12]
Operator non-komuter dalam mekanika kuantum
Dalam mekanika kuantum seperti yang dirumuskan oleh Schrödinger, variabel fisik diwakili oleh operator linier seperti x (artinya dikalikan dengan x), dan . Kedua operator ini tidak bolak-balik seperti yang terlihat dengan mempertimbangkan efek komposisi mereka dan (juga disebut produk operator) pada fungsi gelombang satu dimensi :
Menurut prinsip ketidakpastian dari Heisenberg, jika dua operator yang mewakili sepasang variabel tidak bolak-balik, maka pasangan variabel itu saling komplementer, yang artinya tidak dapat diukur atau diketahui secara bersamaan. Misalnya, posisi dan momentum linier dalam arah x sebuah partikel diwakili oleh operator and , masing-masing (di mana adalah konstanta Planck tereduksi). Ini adalah contoh yang sama kecuali konstanta , jadi sekali lagi operator tidak bolak-balik dan arti fisiknya adalah bahwa posisi dan momentum linear dalam arah tertentu saling melengkapi.
Lihat pula
- Properti antikomutatif
- Pemusat dan penormal (juga disebut komutan)
- Diagram komutatif
- Komutatif (neurofisiologi)
- Pembalik
- Hukum genjang
- Statistik partikel (untuk komutatifitas dalam fisika)
- Properti kuasi-komutatif
- Jejak monoid
- Kemungkinan perjalanan
Catatan
- ^ a b Cabillón and Miller, Commutative and Distributive
- ^ a b Flood, Raymond; Rice, Adrian; Wilson, Robin, ed. (2011). Mathematics in Victorian Britain. Oxford University Press. hlm. 4.
- ^ (Inggris) Weisstein, Eric W. "Symmetric Relation". MathWorld.
- ^ a b Krowne, p.1
- ^ Weisstein, Commute, p.1
- ^ "Compatible Numbers to Simplify Percent Problems". Diakses tanggal 2020-07-17.
- ^ Yark, p.1.
- ^ Lumpkin, p.11
- ^ Gay and Shute, p.?
- ^ O'Conner and Robertson, Real Numbers
- ^ O'Conner and Robertson, Servois
- ^ D. F. Gregory (1840). "On the real nature of symbolical algebra". Transactions of the Royal Society of Edinburgh. 14: 208–216.
Referensi
Buku
- Axler, Sheldon (1997). Linear Algebra Done Right, 2e. Springer. ISBN 0-387-98258-2.
- Abstract algebra theory. Covers commutativity in that context. Uses property throughout book.
- Copi, Irving M.; Cohen, Carl (2005). Introduction to Logic. Prentice Hall.
- Gallian, Joseph (2006). Contemporary Abstract Algebra, 6e. Boston, Mass.: Houghton Mifflin. ISBN 0-618-51471-6.
- Linear algebra theory. Explains commutativity in chapter 1, uses it throughout.
- Goodman, Frederick (2003). Algebra: Abstract and Concrete, Stressing Symmetry, 2e. Prentice Hall. ISBN 0-13-067342-0.
- Abstract algebra theory. Uses commutativity property throughout book.
- Hurley, Patrick (1991). A Concise Introduction to Logic 4th edition. Wadsworth Publishing.
Artikel
- https://web.archive.org/web/20070713072942/http://www.ethnomath.org/resources/lumpkin1997.pdf Lumpkin, B. (1997). The Mathematical Legacy Of Ancient Egypt - A Response To Robert Palter. Unpublished manuscript.
- Article describing the mathematical ability of ancient civilizations.
- Robins, R. Gay, and Charles C. D. Shute. 1987. The Rhind Mathematical Papyrus: An Ancient Egyptian Text. London: British Museum Publications Limited. ISBN 0-7141-0944-4
- Translation and interpretation of the Rhind Mathematical Papyrus.
Sumber berbasis online
- Hazewinkel, Michiel, ed. (2001) [1994], "Commutativity", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
- Krowne, Aaron, Commutative di PlanetMath., Accessed 8 August 2007.
- Definition of commutativity and examples of commutative operations
- (Inggris) Weisstein, Eric W. "Commute". MathWorld., Accessed 8 August 2007.
- Explanation of the term commute
- Yark. Examples of non-commutative operations di PlanetMath., Accessed 8 August 2007
- Examples proving some noncommutative operations
- O'Conner, J J and Robertson, E F. MacTutor history of real numbers, Accessed 8 August 2007
- Article giving the history of the real numbers
- Cabillón, Julio and Miller, Jeff. Earliest Known Uses Of Mathematical Terms, Accessed 22 November 2008
- Page covering the earliest uses of mathematical terms
- O'Conner, J J and Robertson, E F. MacTutor biography of François Servois, Accessed 8 August 2007
- Biography of Francois Servois, who first used the term