Lapangan (matematika)

suatu struktur aljabar dengan operasi seperti penambahan, pengurangan, perkalian, dan pembagian yang memenuhi aksioma tertentu

Lapangan atau medan (juga disebut bidang) dalam matematika adalah suatu struktur aljabar dengan operasi seperti penambahan, pengurangan, perkalian, dan pembagian yang memenuhi aksioma tertentu. Lapangan yang kerap kali dijumpai adalah lapangan bilangan riil, lapangan bilangan kompleks dan bilangan rasional.

Segi tujuh biasa tidak dapat dibangun hanya dengan menggunakan konstruksi garis lurus dan kompas; ini dapat dibuktikan menggunakan bidang bilangan konstruksibel.

Medan yang paling dikenal adalah medan bilangan rasional, bidang bilangan riil dan medan bilangan kompleks. Terdapat medan lainnya, seperti medan fungsi rasional, medan fungsi aljabar, medan bilangan aljabar, dan Medan p-adik umumnya digunakan dan dipelajari dalam matematika, terutama dalam teori bilangan dan geometri aljabar. Sebagian besar protokol kriptografi mengandalkan Medan hingga, yaitu bidang dengan banyak elemen.

Relasi dua medan diekspresikan dengan gagasan tentang ekstensi medan. Teori Galois yang diprakarsai oleh Évariste Galois pada tahun 1830-an, dikhususkan untuk memahami kesimetrian perluasan medan. Di antara hasil lainnya, teori ini menunjukkan bahwa segitiga tiga sudut dan mengkuadratkan lingkaran tidak dapat dilakukan dengan kompas dan garis lurus. Selain itu, ini menunjukkan bahwa persamaan kuintik, secara umum, tidak berpenyelesaian secara aljabar.

Medan berfungsi sebagai gagasan dasar dalam beberapa ranah matematika. Ini mencakup berbagai cabang analisis matematika yang didasarkan pada medan dengan struktur tambahan. Teorema dasar dalam analisis bergantung pada sifat struktural medan bilangan riil. Yang terpenting untuk tujuan aljabar, medan yang digunakan sebagai skalar untuk ruang vektor, yang merupakan konteks umum standar untuk aljabar linear. Medan bilangan bagian dari medan bilangan rasional, dipelajari secara mendalam di teori bilangan. Medan fungsi dapat membantu mendeskripsikan sifat objek geometris.

Definisi

Contoh sebuah lapangan adalah himpunan bilangan rasional Q. Dalam Q terdapat empat operasi dasar: penjumlahan bersama dengan pengurangan, dan perkalian dengan pembagian. Secara intuitif, suatu lapangan adalah himpunan bilangan yang memiliki empat operasi seperti itu. Agar memenuhi syarat sebagai lapangan, operasi-operasi tersebut harus memenuhi aksioma tertentu.

Sebuah lapangan adalah sebuah himpunan, misalkan dinamakan F, bersama dengan dua operasi biner, yang biasanya dinamakan sebagai penambahan dan perkalian, masing-masing dilambangkan sebagai + dan ·, sehingga aksioma berikut berlaku:

Tertutup terhadap penambahan dan perkalian
Untuk semua a, b anggota F, baik a + b dan a · b ada dalam F (atau, dengan rumusan lebih formal, + dan . adalah operasi biner terhadap F).
Sifat asosiatif penambahan dan perkalian
Untuk semua a, b, and c dalam F, persamaan berikut berlaku:

a + (b + c) = (a + b) + c dan a · (b · c) = (a · b) · c.

Sifat komutatif penjumlahan dan perkalian
Untuk semua a dan b dalam F, kesamaan berikut berlaku:

a + b = b + a dan a · b = b · a.

Unsur identitas dalam penambahan dan perkalian
Terdapat anggota atau unsur F, yang dinamakan unsur identitas penambahan yang dilambangkan sebagai 0, sehingga untuk semua a dalam F,

a + 0 = a. Begitu pula, terdapat anggota, yang dinamakan sebagai unsur identitas perkalian yang dilambangkan dengan 1, sehingga untuk semua a dalam F, a · 1 = a. Unsur identitas penambahan dan perkalian disyaratkan berbeda, untuk alasan teknis.

Invers penambahan dan perkalian
Untuk setiap a dalam F, terdapat sebuah anggota, -a dalam F, sehingga

a + (−a) = 0. Dengan cara yang sama, untuk setiap a dalam F selain 0, terdapat anggota a−1 in F,sehingga a · a−1 = 1. (Unsur a + (−b) dan a · b−1 masing-masing dinamakan a − b and a/b) Dengan kata lain, terdapat operasi pengurangan dan pembagian.

Sifat distributif perkalian terhadap penjumlahan
Untuk semua a, b dan c dalam F, kesamaan berikut berlaku:

a · (b + c) = (a · b) + (a · c).

Contoh

Bilangan rasional

Bilangan rasional telah banyak digunakan jauh sebelum elaborasi konsep lapangan. Itu adalah bilangan yang dapat ditulis sebagai pecahan a/b, dimana a dan b adalah bilangan bulat, dan b ≠ 0. Kebalikan aditif dari pecahan tersebut adalah a/b, dan pembalikan perkalian (asalkan a ≠ 0) adalah b/a, yang bisa dilihat sebagai berikut:

 

Aksioma bidang yang diperlukan secara abstrak direduksi menjadi sifat standar bilangan rasional. Misalnya hukum distributivitas dapat dibuktikan sebagai berikut:[1]

 

Bilangan riil dan kompleks

 
Perkalian bilangan kompleks dapat divisualisasikan secara geometris dengan rotasi dan skala.

Bilangan riil R, dengan operasi penjumlahan dan perkalian yang biasa, juga membentuk bidang. Bilangan kompleks C terdiri dari ekspresi

a + bi, dengan a, b,

dimana i adalah unit imajiner, yaitu bilangan (non-nyata) memuaskan i2 = −1. Penjumlahan dan perkalian bilangan real didefinisikan sedemikian rupa sehingga ekspresi jenis ini memenuhi semua aksioma medan dan karenanya berlaku untuk C. Misalnya, penegakan hukum distributif

(a + bi)(c + di) = ac + bci + adi + bdi2 = acbd + (bc + ad)i.

Ini langsung bahwa ini lagi-lagi merupakan ekspresi dari tipe di atas, dan bilangan kompleks membentuk bidang. Bilangan kompleks dapat direpresentasikan secara geometris sebagai titik dalam bidang. dengan koordinat kartesius yang diberikan oleh bilangan real dari ekspresi yang mendeskripsikannya, atau sebagai panah dari asal ke titik-titik ini, ditentukan oleh panjangnya dan sudut tertutup dengan beberapa. Penambahan kemudian sesuai dengan penggabungan panah ke jajaran genjang intuitif (menambahkan koordinat Kartesius), dan perkaliannya, kurang intuitif, menggabungkan putaran dan skala panah (menambahkan sudut dan mengalikan panjangnya). Bidang bilangan real dan kompleks digunakan di seluruh matematika, fisika, teknik, statistik, dan banyak disiplin ilmu lainnya.

Bilangan konstruksibel

 
Teorema rata-rata geometris menegaskan bahwa h2 = pq. Memilih q = 1 memungkinkan pembangunan akar kuadrat dari bilangan yang dapat dibangun p.

Di zaman kuno, beberapa masalah geometris menyangkut kelayakan (dalam) konstruksi bilangan tertentu dengan kompas dan garis lurus. Misalnya, orang Yunani tidak mengetahui bahwa secara umum tidak mungkin untuk membagi dua sudut tertentu dengan cara ini. Masalah ini dapat diselesaikan dengan menggunakan bidang bilangan konstruksibel.[2] Bilangan konstruktif riil, menurut definisi, adalah panjang segmen garis yang dapat dibangun dari titik 0 dan 1 dalam banyak langkah tak terhingga hanya dengan menggunakan kompas dan garis lurus. Angka-angka ini, diberkahi dengan operasi bidang bilangan real, terbatas pada bilangan yang dapat dibangun, membentuk bidang, yang mencakup bidang Q of angka rasional. Ilustrasi menunjukkan konstruksi akar kuadrat dari bilangan yang dapat dibangun, tidak harus terkandung di dalamnya Q. Menggunakan label dalam ilustrasi, buat segmen AB, BD, dan setengah lingkaran berakhir AD (pusatkan di titik tengah C), yang memotong garis tegak lurus melalui B pada satu titik F, pada jarak tepat   dari B jika BD memiliki panjang satu.

Tidak semua bilangan real dapat dibangun. Dapat ditunjukkan bahwa   bukanlah bilangan yang dapat dibangun, yang menyiratkan bahwa tidak mungkin untuk membangun dengan kompas dan meluruskan panjang sisi sebuah kubus dengan volume 2, masalah lain yang ditimbulkan oleh orang Yunani kuno.

Bidang dengan empat elemen

Penambahan Perkalian
+ O I A B
O O I A B
I I O B A
A A B O I
B B A I O
· O I A B
O O O O O
I O I A B
A O A B I
B O B I A

Selain sistem bilangan yang sudah dikenal seperti rasio, ada contoh bidang lain yang kurang langsung. Contoh berikut adalah bidang yang terdiri dari empat elemen yang disebut O, I, A, dan B. Notasi O memainkan peran elemen identitas aditif (dilambangkan 0 dalam aksioma di atas), dan I adalah identitas perkalian (dilambangkan 1 dalam aksioma di atas). Aksioma medan dapat diverifikasi dengan menggunakan beberapa teori medan lagi, atau dengan perhitungan langsung. Sebagai contoh,

A · (B + A) = A · I = A, yang sama dengan A · B + A · A = I + B = A, seperti yang dipersyaratkan oleh distribusi.

Bidang ini disebut bidang hingga dengan empat elemen, dan dilambangkan F4 or GF(4).[3] Bagian terdiri dari O and I (disorot dengan warna merah pada tabel di sebelah kanan) juga merupakan bidang, yang dikenal sebagai bidang biner F2 atau GF(2). Dalam konteks ilmu komputer dan Aljabar Boolean, O dan I masing-masing sering dilambangkan dengan false dan true , penambahan kemudian dilambangkan XOR (eksklusif atau), dan perkalian dilambangkan AND. Dengan kata lain, struktur bidang biner adalah struktur dasar yang memungkinkan dilakukannya komputasi dengan bit.

Konsekuensi dari definisi

Satu memiliki a · 0 = 0 dan a = (−1) · a. Secara khusus, seseorang dapat menyimpulkan kebalikan aditif dari setiap elemen segera setelah dia mengetahui –1.[4]

Jika ab = 0 kemudian a atau b harus 0, karena, jika a ≠ 0, kemudian b = (a–1a)b = a–1(ab) = a–1⋅0 = 0. Ini berarti bahwa setiap bidang adalah domain integral.

Selain itu, properti berikut ini berlaku untuk semua elemen a dan b:

−0 = 0
1−1 = 1
(−(−a)) = a
(a–1)−1 = a
(–a) · b = a · (−b) = −(a · b)

Medan hingga

Bidang hingga (juga disebut bidang Galois ) adalah bidang dengan banyak elemen berhingga, yang jumlahnya juga disebut sebagai urutan bidang. Contoh pengantar di atas F4 adalah bidang dengan empat elemen. Subbidang nya F2 adalah bidang terkecil, karena menurut definisi bidang memiliki setidaknya dua elemen berbeda 1 ≠ 0.

 
Dalam aritmetika modular 12, 9 + 4 = 1 karena 9 + 4 = 13 in Z, yang dibagi 12 daun sisa 1. Namun, Z/12Z bukan bidang karena 12 bukan bilangan prima.

Kolom terbatas paling sederhana, dengan orde utama, paling langsung dapat diakses menggunakan aritmetika modular. Untuk bilangan bulat positif tetap n, aritmetika "modulo n" artinya bekerja dengan angka

Z/nZ = {0, 1, ..., n − 1}.

Penambahan dan perkalian pada himpunan ini dilakukan dengan melakukan operasi yang dimaksud pada himpunan Z bilangan bulat, membaginya dengan n dan mengambil sisanya sebagai hasil. Konstruksi ini menghasilkan bidang persis jika n adalah bilangan prima. Misalnya mengambil bilangan prima n = 2 hasil di bidang yang disebutkan di atas F2. Untuk n = 4 dan secara lebih umum, untuk setiap bilangan komposit (yaitu, bilangan apa pun n yang dapat diekspresikan sebagai produk n = rs dari dua bilangan asli yang lebih kecil), Z/nZ bukan bidang: produk dari dua elemen bukan nol adalah nol karena rs = 0 pada Z/nZ, yang, seperti yang dijelaskan di atas, dengan Z/nZ dari menjadi lapangan. Lapangan Z/pZ dengan p elemen (p menjadi prima) dibangun dengan cara ini biasanya dilambangkan dengan Fp.

Setiap bidang terbatas yang dimiliki F adalah q = pn elemen, di mana p adalah bilangan prima dan n ≥ 1. Pernyataan ini berlaku karena F dapat dilihat sebagai ruang vektor di atas bidang utamanya. dimensi dari ruang vektor ini harus terbatas, katakanlah n , yang menyiratkan pernyataan yang ditegaskan.[5]

Bidang dengan q = pn elemen dapat dibuat sebagai bidang pemisah dari polinomial

f(x) = xqx.

Bidang pemisahan seperti itu merupakan perpanjangan dari Fp di mana polinomial f memiliki q nol. Ini berarti f memiliki angka nol sebanyak mungkin karena derajat dari f adalah q. Untuk q = 22 = 4, itu dapat diperiksa kasus per kasus menggunakan tabel perkalian di atas yang keempat elemennya F4 memenuhi persamaan x4 = x, jadi mereka adalah nol f. Sebaliknya, pada F2, f hanya memiliki dua angka nol (yaitu 0 dan 1), jadi f tidak dibagi menjadi faktor linier dalam bidang yang lebih kecil ini. Menguraikan lebih lanjut pengertian teori medan dasar, dapat ditunjukkan bahwa dua bidang berhingga dengan urutan yang sama adalah isomorfik.[6] Oleh karena itu, adalah kebiasaan untuk menyebut bidang berhingga dengan elemen q , dilambangkan dengan Fq atau GF(q).

Sejarah

Secara historis, tiga disiplin ilmu aljabar mengarah pada konsep bidang: soal menyelesaikan persamaan polinomial, teori bilangan aljabar, dan geometri aljabar.[7] Langkah pertama menuju gagasan bidang dibuat pada tahun 1770 oleh Joseph-Louis Lagrange, yang mengamati bahwa mengubah angka nol x1, x2, x3 dari polinomial kubik dalam pernyataan tersebut

(x1 + ωx2 + ω2x3)3

(dengan ω menjadi akar persatuan ketiga) hanya menghasilkan dua nilai. Dengan cara ini, Lagrange secara konseptual menjelaskan metode solusi klasik Scipione del Ferro dan François Viète, yang melanjutkan dengan mengurangi persamaan kubik untuk x yang tidak diketahui menjadi persamaan kuadrat untuk x3.[8] Bersama dengan pengamatan serupa untuk persamaan derajat 4, Lagrange menghubungkan apa yang akhirnya menjadi konsep bidang dan konsep grup.[9] Vandermonde, juga pada tahun 1770, dan secara lebih luas, Carl Friedrich Gauss, dalam karyanya Disquisitiones Arithmeticae (1801), mempelajari persamaan

xp = 1

untuk bilangan prima p dan, lagi-lagi menggunakan bahasa modern, hasil siklik grup Galois. Gauss menyimpulkan bahwa regular p-gon dapat dibangun jika p = 22k + 1. Berdasarkan karya Lagrange, Paolo Ruffini menyatakan (1799) bahwa persamaan kuintik s (persamaan polinomial derajat 5) tidak dapat diselesaikan secara aljabar; Namun, argumennya salah. Celah ini diisi oleh Niels Henrik Abel pada tahun 1824.[10] Évariste Galois, pada tahun 1832, merancang kriteria yang diperlukan dan cukup agar persamaan polinomial dapat dipecahkan secara aljabar, sehingga menetapkan efek yang sekarang dikenal sebagai teori Galois. Baik Abel dan Galois bekerja dengan apa yang sekarang disebut bidang angka aljabar, tetapi tidak memahami gagasan eksplisit tentang bidang, atau pun grup.

Pada tahun 1871 Richard Dedekind diperkenalkan, untuk satu set bilangan real atau kompleks yang ditutup di bawah empat operasi aritmatika, kata Jerman Körper , yang berarti "tubuh" atau "korpus" (untuk menyarankan entitas yang tertutup secara organik). Istilah Inggris "field" diperkenalkan oleh (Moore 1893).[11]

Yang kami maksud dengan bidang adalah setiap sistem tak terbatas dari bilangan real atau kompleks yang begitu tertutup dengan sendirinya dan menyempurnakan penjumlahan, pengurangan itu, perkalian, dan pembagian salah satu dari dua bilangan ini lagi-lagi menghasilkan bilangan sistem.

— Richard Dedekind, 1871[12]

Pada tahun 1881 Leopold Kronecker mendefinisikan apa yang dia sebut sebagai domain rasionalitas , yang merupakan bidang pecahan rasional dalam istilah modern. Gagasan Kronecker tidak mencakup bidang semua bilangan aljabar (yang merupakan bidang dalam pengertian Dedekind), tetapi di sisi lain lebih abstrak daripada Dedekind karena tidak membuat asumsi khusus tentang sifat elemen suatu bidang. Kronecker menafsirkan bidang seperti Q(π) secara abstrak sebagai bidang fungsi rasional Q(X). Sebelum ini, contoh bilangan transendental telah diketahui sejak karya Joseph Liouville pada tahun 1844, sampai Charles Hermite (1873) dan Ferdinand von Lindemann (1882) membuktikan transendensi {math|e}} dan π.[13]

Catatan

  1. ^ (Beachy & Blair 2006, p. 120, Ch. 3)
  2. ^ (Artin 1991, Chapter 13.4)
  3. ^ (Lidl & Niederreiter 2008, Example 1.62)
  4. ^ (Beachy & Blair 2006, p. 120, Ch. 3)
  5. ^ (Lidl & Niederreiter 2008, Lemma 2.1, Theorem 2.2)
  6. ^ (Lidl & Niederreiter 2008, Theorem 1.2.5)
  7. ^ (Kleiner 2007, p. 63)
  8. ^ (Kiernan 1971, p. 50)
  9. ^ (Bourbaki 1994, pp. 75–76)
  10. ^ (Corry 2004, p.24)
  11. ^ Penggunaan Paling Awal dari Beberapa Kata Matematika (F)
  12. ^ (Dirichlet 1871, p. 42), translation by (Kleiner 2007, p. 66)
  13. ^ (Bourbaki 1994, p. 81)

Referensi