Usaha (fisika)
Usaha atau kerja (dilambangkan dengan W dari Bahasa Inggris Work) adalah energi yang disalurkan gaya ke sebuah benda sehingga benda tersebut bergerak.
Kerja | |
---|---|
Simbol umum | W |
Satuan SI | joule (J) |
Dalam satuan pokok SI | 1 kg⋅m2/s2 |
Dimensi SI | M L2 T−2 |
Turunan dari besaran lainnya | W = F ⋅ s W = τ θ |
Bagian dari seri artikel mengenai |
Mekanika klasik |
---|
Usaha didefinisikan sebagai integral garis (pembaca yang tidak akrab dengan kalkulus peubah banyak lihat "rumus mudah" di bawah):
Usaha adalah besaran skalar, tetapi dia dapat positif atau negatif. Tidak semua gaya melakukan kerja. contohnya, gaya sentripetal dalam gerakan berputar seragam tidak menyalurkan energi; kecepatan objek yang bergerak tetap konstan. Kenyataan ini diyakinkan oleh formula: bila vektor dari gaya dan perpindahan tegak lurus, yakni perkalian titik mereka sama dengan nol.
Bentuk usaha tidak selalu mekanis, seperti usaha listrik, dapat dipandang sebagai kasus khusus dari prinsip ini; misalnya, di dalam kasus listrik, usaha dilakukan dalam partikel bermuatan yang bergerak melalui sebuah medium.
Konduksi panas dari badan yang lebih hangat ke yang lebih dingin biasanya bukan merupakan usaha mekanis, karena pada ukuran mikroskopik, tidak ada gaya yang dapat diukur. Pada ukuran atomik, ada gaya di mana atom berbenturan, tetapi dalam jumlahnya usaha hampir sama dengan nol.
Sejarah
Menurut Jammer, istilah kerja diperkenalkan pada tahun 1826 oleh ahli matematika Prancis Gaspar Gustave de Coriolis sebagai "berat yang diangkat melalui ketinggian", yang didasarkan pada penggunaan mesin uap awal untuk mengangkat ember air dari tambang bijih yang banjir. Menurut[1] René Dugas, insinyur dan sejarawan Prancis, kepada Solomon dari Caux "kita berhutang pada istilah kerja dalam arti yang digunakan dalam mekanika sekarang". Meskipun pekerjaan tidak digunakan secara resmi sampai tahun 1826, konsep serupa sudah ada sebelum itu. Pada tahun 1759, [2]John Smeaton menggambarkan suatu besaran yang disebutnya "kekuatan" "untuk menandakan pengerahan tenaga, gravitasi, impuls, atau tekanan, untuk menghasilkan gerakan." Smeaton melanjutkan bahwa kuantitas ini dapat dihitung jika "berat yang diangkat dikalikan dengan tinggi yang dapat dinaikkan dalam waktu tertentu," membuat definisi ini sangat mirip dengan Coriolis.
Satuan
Setara newton-meter (N⋅m) secara dimensi kadang-kadang digunakan sebagai satuan pengukuran untuk kerja, tetapi ini dapat dikacaukan dengan satuan pengukuran torsi. Penggunaan N⋅m tidak dianjurkan oleh otoritas SI, karena dapat menimbulkan kebingungan apakah besaran yang dinyatakan dalam newton meter adalah pengukuran torsi, atau pengukuran kerja.
Satuan kerja non-SI meliputi newton meter, erg, [3]foot pound, [[4]]foot poundal, [[5]]kilowatt hours,liter atmosfer, dan [[6]]horsepower-hour. Karena kerja memiliki dimensi fisik yang sama dengan panas, kadang-kadang satuan pengukuran biasanya dicadangkan untuk panas atau kandungan energi, Satuan kerja SI adalah joule (J), dinamai sesuai dengan fisikawan Inggris abad ke-19 James Prescott Joule, yang didefinisikan sebagai kerja yang diperlukan untuk mengerahkan gaya sebesar satu newton melalui perpindahan sejauh satu meter. seperti term, BTU dan kalori, digunakan sebagai satuan pengukuran.
Usaha dan Energi
Usaha W yang dilakukan oleh gaya konstan sebesar F pada titik yang memindahkan perpindahan dalam garis lurus ke arah gaya adalah produk
W=F.s
Misalnya, jika gaya 10 newton (F = 10 N) bekerja di sepanjang titik yang menempuh jarak 2 meter (s = 2 m), maka W = Fs = (10 N) (2 m) = 20 J. Ini kira-kira pekerjaan yang dilakukan mengangkat benda 1 kg dari permukaan tanah ke atas kepala seseorang melawan gaya gravitasi.
Pekerjaan digandakan baik dengan mengangkat dua kali berat pada jarak yang sama atau dengan mengangkat beban yang sama dua kali jarak.
Usaha erat kaitannya dengan energi. Prinsip kerja-energi menyatakan bahwa peningkatan energi kinetik benda tegar disebabkan oleh jumlah yang sama dari kerja positif yang dilakukan pada benda oleh gaya resultan yang bekerja pada benda tersebut. Sebaliknya, penurunan energi kinetik disebabkan oleh jumlah yang sama dari pekerjaan negatif yang dilakukan oleh gaya yang dihasilkan. Jadi, jika usaha bersihnya positif, maka energi kinetik partikel bertambah sebesar usaha. Jika kerja bersih yang dilakukan negatif, maka energi kinetik partikel berkurang dengan jumlah kerja.
Dari hukum kedua Newton, dapat ditunjukkan bahwa kerja pada benda bebas (tanpa medan), kaku (tanpa derajat kebebasan internal), sama dengan perubahan energi kinetik Ek yang sesuai dengan kecepatan linier dan kecepatan sudut benda itu,
W=∆Ek
Kerja gaya-gaya yang dihasilkan oleh fungsi potensial dikenal sebagai energi potensial dan gaya-gaya tersebut dikatakan konservatif. Oleh karena itu, kerja pada sebuah benda yang hanya dipindahkan dalam medan gaya konservatif, tanpa perubahan kecepatan atau rotasi, sama dengan dikurangi perubahan energi potensial Ep benda,
Rumus-rumus ini menunjukkan bahwa usaha adalah energi yang terkait dengan aksi suatu gaya, sehingga kerja selanjutnya memiliki dimensi fisik, dan satuan energi. Prinsip kerja/energi yang dibahas di sini identik dengan prinsip kerja/energi listrik.
Kekuatan Kendala
Gaya kendala menentukan perpindahan objek dalam sistem, membatasinya dalam suatu jangkauan. Sebagai contoh, dalam kasus kemiringan ditambah gravitasi, benda tersebut menempel pada kemiringan dan, ketika diikat pada tali yang kencang, benda itu tidak dapat bergerak ke arah luar untuk membuat tali menjadi mengencang. Ini menghilangkan semua perpindahan ke arah itu, yaitu, kecepatan dalam arah kendala terbatas pada 0, sehingga gaya kendala tidak melakukan kerja pada sistem.
Untuk sistem mekanis, gaya kendala menghilangkan gerakan dalam arah yang menjadi ciri kendala. Jadi kerja virtual yang dilakukan oleh gaya-gaya kendala adalah nol, hasil yang hanya benar jika gaya gesekan dikecualikan.
Gaya kendala tetap tanpa gesekan tidak melakukan kerja pada sistem, karena sudut antara gerak dan gaya kendala selalu 90°. Contoh kendala workless adalah: interkoneksi kaku antara partikel, gerakan geser pada permukaan tanpa gesekan, dan kontak bergulir tanpa slip.
Misalnya, dalam sistem katrol seperti mesin Atwood, gaya internal pada tali dan pada katrol pendukung tidak bekerja pada sistem. Oleh karena itu, usaha hanya perlu dihitung untuk gaya gravitasi yang bekerja pada benda. Contoh lain adalah gaya sentripetal yang diberikan ke dalam oleh tali pada bola yang bergerak melingkar beraturan ke samping membatasi bola pada gerakan melingkar yang membatasi gerakannya menjauh dari pusat lingkaran. Gaya ini tidak bekerja nol karena tegak lurus dengan kecepatan bola.
Gaya magnet pada partikel bermuatan adalah F = qv × B, di mana q adalah muatan, v adalah kecepatan partikel, dan B adalah medan magnet. Hasil perkalian silang selalu tegak lurus kedua vektor asal, jadi F v. Hasil kali titik dua vektor tegak lurus selalu nol, sehingga usaha W = F v = 0, dan gaya magnet tidak dilakukan kerja. Itu dapat mengubah arah gerak tetapi tidak pernah mengubah kecepatan.
Perhitungan matematis
Untuk benda bergerak, besarnya kerja/waktu (daya) bisa dihitung. Maka, besarnya kerja yang dilakukan gaya (diukur dalam joule/sekon atau watt) adalah perkalian skalar dari gaya (vektor) dengan kecepatan (vektor). Perkalian skalar dari gaya dan kecepatan ini adalah daya sesaat. Seperti kecepatan yang diintegrasikan terhadap waktu untuk mendapatkan jarak total, menurut teorema dasar kalkulus, total kerja sepanjang lintasan adalah integral waktu dari daya sesaat sepanjang lintasan yang dilewati.[1]
Usaha adalah hasil gaya pada suatu titik yang mengikuti kurva X, dengan kecepatan v, setiap saat. Jumlah kecil pekerjaan W yang terjadi selama waktu dt dihitung sebagai
di mana F. v adalah kekuatan selama dt instan. Jumlah dari sejumlah kecil pekerjaan di atas lintasan titik menghasilkan pekerjaan
https://wikimedia.org/api/rest_v1/media/math/render/svg/24f9de9f3b829482f03e485fe3952a2afd47a3f0
di mana C adalah lintasan dari x(t1) ke x(t2). Integral ini dihitung sepanjang lintasan partikel, dan oleh karena itu dikatakan bergantung pada jalur.
Jika gaya selalu diarahkan sepanjang garis ini, dan besarnya gaya adalah F, maka integral ini disederhanakan menjadi
dimana s adalah perpindahan sepanjang garis. Jika F konstan, selain diarahkan sepanjang garis, maka integral disederhanakan lebih lanjut menjadi
di mana s adalah perpindahan titik sepanjang garis. Perhitungan ini dapat digeneralisasi untuk gaya konstan yang tidak diarahkan sepanjang garis, diikuti oleh partikel. Dalam hal ini hasil kali titik F ds = F cos ds, di mana adalah sudut antara vektor gaya dan arah gerakan, yaitu
Ketika komponen gaya tegak lurus terhadap perpindahan objek (seperti ketika sebuah benda bergerak dalam lintasan melingkar di bawah gaya pusat), tidak ada usaha yang dilakukan, karena kosinus 90° adalah nol. Dengan demikian, tidak ada pekerjaan yang dapat dilakukan oleh gravitasi pada planet dengan orbit melingkar (ini ideal, karena semua orbit sedikit elips). Juga, tidak ada pekerjaan yang dilakukan pada benda yang bergerak melingkar dengan kecepatan konstan sementara dibatasi oleh gaya mekanik, seperti bergerak dengan kecepatan konstan dalam sentrifugal ideal tanpa gesekan.
Usaha yang Dilakukan Gaya variabel
Menghitung usaha sebagai "gaya kali ruas jalan lurus" hanya akan diterapkan dalam keadaan yang paling sederhana, seperti disebutkan di atas. Jika gaya berubah, atau jika benda bergerak sepanjang lintasan melengkung, mungkin berputar dan tidak harus kaku, maka hanya lintasan titik penerapan gaya yang relevan untuk kerja yang dilakukan, dan hanya komponen gaya yang sejajar dengan titik aplikasi kecepatan sedang melakukan kerja (usaha positif bila searah, dan negatif bila berlawanan arah kecepatan). Komponen gaya ini dapat dijelaskan dengan besaran skalar yang disebut komponen tangensial skalar (F cos(θ), di mana adalah sudut antara gaya dan kecepatan). Dan kemudian definisi kerja yang paling umum dapat dirumuskan sebagai berikut:
Kerja suatu gaya adalah integral garis dari komponen tangensial skalarnya sepanjang lintasan titik penerapannya. Jika gaya bervariasi (misalnya menekan pegas) kita perlu menggunakan kalkulus untuk menemukan pekerjaan yang dilakukan. Jika gaya diberikan oleh F(x) (fungsi x) maka usaha yang dilakukan oleh gaya sepanjang sumbu x dari a ke b adalah:
di mana s adalah titik sepanjang garis.
Perhitungan ini dapat digeneralisasi untuk gaya konstan yang tidak diarahkan sepanjang garis, diikuti oleh partikel. Dalam hal ini hasil kali titik F ds = F cos ds, di mana adalah sudut antara vektor gaya dan arah gerakan, yaitu
Torsi dan rotasi
Kopling gaya dihasilkan dari gaya yang sama besar dan berlawanan arah, bekerja pada dua titik berbeda pada benda tegar. Jumlah (resultan) dari gaya-gaya ini dapat dibatalkan, tetapi efeknya pada benda adalah kopel atau torsi T. Kerja torsi dihitung sebagai
di mana T⋅ ω adalah kekuatan atas instan t.δ Jumlah dari sejumlah kecil kerja di atas lintasan benda tegar menghasilkan kerja,
di mana C adalah lintasan dari φ(t1) ke φ(t2). Integral ini bergantung pada lintasan rotasi φ(t), dan karenanya bergantung pada lintasan.
Jika torsi T sejajar dengan vektor kecepatan sudut sehingga,
dan torsi dan kecepatan sudutnya konstan, maka pekerjaan berbentuk,
Hasil ini dapat dipahami lebih sederhana dengan mempertimbangkan torsi yang timbul dari gaya yang besarnya konstan F, diterapkan secara tegak lurus ke lengan tuas pada jarak r, seperti yang ditunjukkan pada gambar. Gaya ini akan bekerja melalui jarak sepanjang busur lingkaran s = rφ, sehingga usaha yang dilakukan adalah
Perkenalkan torsi = Fr, untuk mendapatkan
seperti yang disajikan di atas. Perhatikan bahwa hanya komponen torsi dalam arah vektor kecepatan sudut yang berkontribusi pada kerja.
Usaha dan energi potensial
hasil kali skalar dari gaya F dan kecepatan v dari titik penerapannya menentukan input daya ke sistem pada saat tertentu. Integrasi daya ini pada lintasan titik aplikasi, C = x(t), mendefinisikan masukan kerja ke sistem oleh gaya.
Ketergantungan jalur
Hasil kali skalar dari gaya F dan kecepatan v dari titik penerapannya menentukan input daya ke sistem pada saat tertentu. Integrasi daya ini pada lintasan titik aplikasi, C = x(t), mendefinisikan masukan kerja ke sistem oleh gaya.
di mana dx(t) mendefinisikan lintasan C dan v adalah kecepatan sepanjang lintasan ini. Secara umum integral ini memerlukan lintasan yang ditentukan kecepatannya, sehingga evaluasi kerja dikatakan bergantung lintasan. Turunan waktu dari integral untuk kerja menghasilkan daya sesaat,
Jalur kebebasan
Jika usaha untuk gaya yang diberikan tidak bergantung pada lintasan, maka usaha yang dilakukan oleh gaya tersebut, dengan teorema gradien, mendefinisikan fungsi potensial yang dievaluasi pada awal dan akhir lintasan titik aplikasi. Ini berarti bahwa terdapat fungsi potensial U(x), yang dapat dievaluasi pada dua titik x(t1) dan x(t2) untuk memperoleh kerja pada sembarang lintasan antara kedua titik tersebut. Merupakan tradisi untuk mendefinisikan fungsi ini dengan tanda negatif sehingga kerja positif adalah pengurangan potensi, yaitu
Fungsi U(x) disebut energi potensial yang terkait dengan gaya yang diterapkan. Gaya yang diturunkan dari fungsi potensial seperti itu dikatakan konservatif. Contoh gaya yang memiliki energi potensial adalah gaya gravitasi dan gaya pegas.
Dalam hal ini, gradien kerja menghasilkan
dan gaya F dikatakan "diturunkan dari sebuah potensial."
Karena potensial U mendefinisikan gaya F di setiap titik x dalam ruang, himpunan gaya disebut medan gaya. Daya yang diterapkan pada benda oleh medan gaya diperoleh dari gradien kerja, atau potensial, dalam arah kecepatan V benda, yaitu
Bekerja dengan gravitasi
Dengan tidak adanya gaya lain, gravitasi menghasilkan percepatan ke bawah yang konstan dari setiap benda yang bergerak bebas. Di dekat permukaan bumi, percepatan gravitasi adalah g = 9,8 m⋅s−2 dan gaya gravitasi pada benda bermassa m adalah Fg = mg. Lebih mudah untuk membayangkan gaya gravitasi ini terkonsentrasi di pusat massa objek.
Jika sebuah benda dengan berat mg dipindahkan ke atas atau ke bawah pada jarak vertikal y2 y1, usaha yang dilakukan W pada benda adalah:
di mana Fg adalah berat (pon dalam satuan imperial, dan newton dalam satuan SI), dan y adalah perubahan tinggi y. Perhatikan bahwa usaha yang dilakukan oleh gravitasi hanya bergantung pada gerakan vertikal benda. Adanya gesekan tidak mempengaruhi kerja yang dilakukan pada benda berdasarkan beratnya.
Bekerja dengan gravitasi di luar angkasa
Gaya gravitasi yang diberikan oleh massa M pada massa lain m diberikan oleh:
di mana r adalah vektor posisi dari M ke m. Biarkan massa m bergerak dengan kecepatan v; maka kerja gravitasi pada massa ini saat bergerak dari posisi r(t1) ke r(t2) diberikan oleh
Perhatikan bahwa posisi dan kecepatan massa m diberikan oleh
di mana er dan et adalah vektor satuan radial dan tangensial yang diarahkan relatif terhadap vektor dari M ke m, dan kita menggunakan fakta bahwa
Gunakan ini untuk menyederhanakan rumus kerja gravitasi menjadi,
Perhitungan ini menggunakan fakta bahwa
fungsinya
adalah fungsi potensial gravitasi, juga dikenal sebagai energi potensial gravitasi. Tanda negatif mengikuti konvensi bahwa usaha diperoleh dari hilangnya energi potensial.
adalah fungsi potensial gravitasi, juga dikenal sebagai energi potensial gravitasi. Tanda negatif mengikuti konvensi bahwa usaha diperoleh dari hilangnya energi potensial.
Bekerja dengan pegas
Pertimbangkan sebuah pegas yang memberikan gaya horizontal F = (−kx, 0, 0) yang sebanding dengan defleksinya dalam arah x yang tidak bergantung pada bagaimana sebuah benda bergerak. Usaha pegas ini pada sebuah benda yang bergerak sepanjang ruang dengan kurva X(t) = (x(t), y(t), z(t)), dihitung dengan menggunakan kecepatannya, v = (vx, vy, vz), untuk mendapatkan
Bekerja dengan gas
Dimana P adalah tekanan, V adalah volume, dan a dan b adalah volume awal dan akhir.
Untuk memudahkan, perhatikan kontak dengan pegas yang terjadi pada t = 0, maka integral hasil kali jarak x dan kecepatan x, xvxdt, terhadap waktu t adalah (1/2)x2. Usaha adalah hasil kali jarak dikali gaya pegas, yang juga bergantung pada jarak; maka hasil x2.
Referensi
- ^ Resnick, Robert and Halliday, David (1966), Physics, Section 1–3 (Vol I and II, Combined edition), Wiley International Edition, Library of Congress Catalog Card No. 66-11527
Bacaan lebih lanjut
- Abdullah, Mikrajuddin (2007). Fisika 2A SMA dan MA Untuk Kelas XI Semester 1. Jakarta: Esis/Erlangga. ISBN 974-734-646-3. (Indonesia)