Gerak melingkar (bahasa Inggris: circular motion) adalah gerak suatu benda yang membentuk lintasan berupa lingkaran mengelilingi suatu titik tetap. Agar suatu benda dapat bergerak melingkar ia membutuhkan adanya gaya yang selalu membelokkan-nya menuju pusat lintasan lingkaran. Gaya ini dinamakan gaya sentripetal. Suatu gerak melingkar beraturan dapat dikatakan sebagai suatu gerak dipercepat beraturan, mengingat perlu adanya suatu percepatan yang besarnya tetap dengan arah yang berubah, yang selalu mengubah arah gerak benda agar menempuh lintasan berbentuk lingkaran.[1]

Gerak melingkar.

Besaran gerak melingkar

sunting

Besaran-besaran yang mendeskripsikan suatu gerak melingkar adalah  ,   dan   atau berturur-turut berarti sudut, kecepatan sudut dan percepatan sudut. Besaran-besaran ini bila dianalogikan dengan gerak linier setara dengan posisi, kecepatan dan percepatan atau dilambangkan berturut-turut dengan  ,   dan  .

Besaran gerak lurus dan melingkar
Gerak lurus Gerak melingkar
Besaran Satuan (SI) Satuan (SI)
posisi   m rad
kecepatan   m/s rad/s
percepatan   m/s2 rad/s2
- - s
- - m

Turunan dan integral

sunting

Seperti halnya kembarannya dalam gerak linier, besaran-besaran gerak melingkar pun memiliki hubungan satu sama lain melalui proses integrasi dan diferensiasi.

 
 
 

Hubungan antar besaran sudut dan tangensial

sunting

Antara besaran gerak linier dan melingkar terdapat suatu hubungan melalui   khusus untuk komponen tangensial, yaitu

 

Perhatikan bahwa di sini digunakan   yang didefinisikan sebagai jarak yang ditempuh atau tali busur yang telah dilewati dalam suatu selang waktu dan bukan hanya posisi pada suatu saat, yaitu

 

untuk suatu selang waktu kecil atau sudut yang sempit.

Jenis gerak melingkar

sunting

Gerak melingkar dapat dibedakan menjadi dua jenis, atas keseragaman kecepatan sudutnya  , yaitu:

  • gerak melingkar beraturan, dan
  • gerak melingkar berubah beraturan.

Gerak melingkar beraturan

sunting

Gerak Melingkar Beraturan (GMB) adalah gerak melingkar dengan besar kecepatan sudut   tetap. Besar Kecepatan sudut diperolah dengan membagi kecepatan tangensial   dengan jari-jari lintasan  .

 

Arah kecepatan linier   dalam GMB selalu menyinggung lintasan, yang berarti arahnya sama dengan arah kecepatan tangensial  . Tetapnya nilai kecepatan   akibat konsekuensi dar tetapnya nilai  . Selain itu terdapat pula percepatan radial   yang besarnya tetap dengan arah yang berubah. Percepatan ini disebut sebagai percepatan sentripetal, di mana arahnya selalu menunjuk ke pusat lingkaran.

 

Bila   adalah waktu yang dibutuhkan untuk menyelesaikan satu putaran penuh dalam lintasan lingkaran  , maka dapat pula dituliskan

 

Kinematika gerak melingkar beraturan adalah

 

dengan   adalah sudut yang dilalui pada suatu saat  ,   adalah sudut mula-mula dan   adalah kecepatan sudut (yang tetap nilainya).

Ciri-ciri gerak melingkar beraturan:

  • Besar kelajuan linearnya tetap
  • Besar kecepatan sudutnya tetap
  • Besar percepatan sentripetalnya tetap
  • Lintasannya berupa lingkaran

Gerak melingkar berubah beraturan

sunting

Gerak Melingkar Berubah Beraturan (GMBB) adalah gerak melingkar dengan percepatan sudut   tetap. Dalam gerak ini terdapat percepatan tangensial   (yang dalam hal ini sama dengan percepatan linier) yang menyinggung lintasan lingkaran (berhimpit dengan arah kecepatan tangensial  ).

 

Kinematika GMBB adalah

 
 
 

dengan   adalah percepatan sudut yang bernilai tetap dan   adalah kecepatan sudut mula-mula.

Ciri-ciri gerak melingkar berubah beraturan:

  • Besar kelajuan linearnya berubah
  • Besar kecepatan sudutnya berubah
  • Besar percepatan sentripetalnya berubah
  • Lintasannya berupa lingkaran

Persamaan parametrik

sunting

Gerak melingkar dapat pula dinyatakan dalam persamaan parametrik dengan terlebih dahulu mendefinisikan:

  • titik awal gerakan dilakukan  
  • kecepatan sudut putaran   (yang berarti suatu GMB)
  • pusat lingkaran  

untuk kemudian dibuat persamaannya.[2]

Hal pertama yang harus dilakukan adalah menghitung jari-jari lintasan   yang diperoleh melalui:

 

Setelah diperoleh nilai jari-jari lintasan, persamaan dapat segera dituliskan, yaitu

 
 

dengan dua konstanta   dan   yang masih harus ditentukan nilainya. Dengan persyaratan sebelumnya, yaitu diketahuinya nilai  , maka dapat ditentukan nilai   dan  :

 
 

Perlu diketahui bahwa sebenarnya

 

karena merupakan sudut awal gerak melingkar.

Hubungan antar besaran linier dan angular

sunting

Dengan menggunakan persamaan parametrik, telah dibatasi bahwa besaran linier yang digunakan hanyalah besaran tangensial atau hanya komponen vektor pada arah angular, yang berarti tidak ada komponen vektor dalam arah radial. Dengan batasan ini hubungan antara besaran linier (tangensial) dan angular dapat dengan mudah diturunkan.

Kecepatan tangensial dan kecepatan sudut

sunting

Kecepatan linier total dapat diperoleh melalui

 

dan karena batasan implementasi persamaan parametrik pada gerak melingkar, maka

 

dengan

 
 

diperoleh

 
 

sehingga

 
 
 

Percepatan tangensial dan kecepatan sudut

sunting

Dengan cara yang sama dengan sebelumnya, percepatan linier total dapat diperoleh melalui

 

dan karena batasan implementasi persamaan parametrik pada gerak melingkar, maka

 

dengan

 
 

diperoleh

 
 

sehingga

 
 
 

Kecepatan sudut tidak tetap

sunting

Persamaan parametric dapat pula digunakan apabila gerak melingkar merupakan GMBB, atau bukan lagi GMB dengan terdapatnya kecepatan sudut yang berubah beraturan (atau adanya percepatan sudut). Langkah-langkah yang sama dapat dilakukan, akan tetapi perlu diingat bahwa

 

dengan   percepatan sudut dan   kecepatan sudut mula-mula. Penurunan GMBB ini akan menjadi sedikit lebih rumit dibandingkan pada kasus GMB di atas.

Persamaan parametrik di atas, dapat dituliskan dalam bentuk yang lebih umum, yaitu:

 
 

di mana   adalah sudut yang dilampaui dalam suatu kurun waktu. Seperti telah disebutkan di atas mengenai hubungan antara  ,   dan   melalui proses integrasi dan diferensiasi, maka dalam kasus GMBB hubungan-hubungan tersebut mutlak diperlukan.

Kecepatan sudut

sunting

Dengan menggunakan aturan rantai dalam melakukan diferensiasi posisi dari persamaan parametrik terhadap waktu diperoleh

 
 

dengan

 

Dapat dibuktikan bahwa

 

sama dengan kasus pada GMB.

Gerak berubah beraturan

sunting

Gerak melingkar dapat dipandang sebagai gerak berubah beraturan. Bedakan dengan gerak lurus berubah beraturan (GLBB). Konsep kecepatan yang berubah kadang hanya dipahami dalam perubahan besarnya, dalam gerak melingkar beraturan (GMB) besarnya kecepatan adalah tetap, akan tetapi arahnya yang berubah dengan beraturan, bandingkan dengan GLBB yang arahnya tetap akan tetapi besarnya kecepatan yang berubah beraturan.

Gerak berubah beraturan
Kecepatan GLBB GMB
Besar berubah tetap
Arah tetap berubah

Lihat pula

sunting

Referensi

sunting
  1. ^ Richard S. Westfall, Circular Motion in Seventeenth-Century Mechanics, Isis, Vol. 63, No. 2. (Jun., 1972), pp. 184-189.
  2. ^ Chapter 22 Parametric Equation,, Department of Mathematics, University of Washington, Math 124 Materials (Autumn), ch 22, pp. 308 Diarsipkan 2006-09-03 di Wayback Machine..

Pranala luar

sunting