Kaidah pendiferensialan
Kalkulus |
---|
Kaidah pendiferensialan (atau aturan pendiferensialan; bahasa Inggris: Rules of differentiation) berikut merupakan ringkasan kaidah-kaidah untuk menghitung derivatif suatu fungsi dalam kalkulus. Untuk daftar yang lebih lengkap, lihat Tabel turunan.
Kaidah dasar pendiferensialan
suntingKecuali dinyatakan lain, semua fungsi merupakan fungsi bilangan real (R) yang menghasilkan nilai bilangan real; meskipun secara lebih umum, rumus-rumus berikut dapat diterapkan di manapun jika didefinisikan dengan baik[1][2]— termasuk bilangan kompleks (C).[3]
Pendiferensialan adalah linier
suntingUntuk fungsi-fungsi f dan g dan bilangan real a dan b apapun, turunan fungsi h(x) = af(x) + bg(x) terhadap x dapat ditulis
Dalam notasi Leibniz ini ditulis sebagai:
Kasus-kasus khusus meliputi:
- Kaidah pengurangan
Kaidah hasil kali
suntingUntuk fungsi-fungsi f dan g, turunan fungsi h(x) = f(x) g(x) terhadap x dapat ditulis
Dalam notasi Leibniz ini ditulis sebagai:
Kaidah rantai
suntingTurunan dari fungsi h(x) = f(g(x)) terhadap x dapat ditulis
Dalam notasi Leibniz ini ditulis sebagai:
Namun, dengan melonggarkan penafsiran h sebagai suatu fungsi, dapat ditulis lebih sederhana sebagai
Kaidah fungsi inversi
suntingJika fungsi f mempunyai suatu fungsi invers g, yaitu g(f(x)) = x dan f(g(y)) = y, maka
Dalam notasi Leibniz ini ditulis sebagai:
Hukum pangkat, polinomial, hasil bagi, dan timbal-balik
suntingKaidah pangkat polinomial atau elementer
suntingJika , untuk bilangan bulat n apapun maka
Kasus-kasus khusus meliputi:
- Kaidah konstanta: jika f adalah fungsi konstanta f(x) = c, untuk bilangan c apapun, maka untuk semua x, f′(x) = 0.
- jika f(x) = x, maka f′(x) = 1. Kasus khusus ini dapat digeneralisasi menjadi:
- Turunan suatu fungsi affine adalah suatu konstanta: jika f(x) = ax + b, maka f′(x) = a.
Penggabungan kaidah ini dengan kelinearan turunan dan kaidah penjumlahan memungkinan penghitungan turunan polinomial apapun.
Kaidah timbal-balik
suntingTurunan dari h(x) = 1/f(x) untuk fungsi f (yang "tidak menghilang"; nonvanishing) manapun adalah:
Dalam notasi Leibniz ini ditulis sebagai:
Kaidah timbal balik (reciprocal rule) dapat diturunkan dari kaidah rantai (chain rule) dan kaidah pemangkatan (kaidah pangkat; power rule).
Kaidah hasil bagi
suntingJika f dan g adalah fungsi, maka:
- di mana g bukan nol.
Ini dapat diturunkan dari kaidah timbal balik dan kaidah darab. Sebaliknya (menggunakan kaidah konstanta) kaidah timbal balik dapat diturunkan dari kasus khusus f(x) = 1.
Kaidah pemangkatan yang dirampat
suntingKaidah pemangkatan elementer menggeneralisasi luas. Kaidah pemangkat yang paling luas adalah "kaidah pemangkatan fungsional" (functional power rule): untuk fungsi-fungsi f dan g apappun,
di mana kedua sisi didefinisikan dengan baik.
Kasus-kasus khusus:
- Jika f(x) = xa, f′(x) = axa − 1 bilamana a adalah suatu bilangan real dan x adalah positif.
- Kaidah timbal balik (reciprocal rule) dapat diturunkan sebagai kasus khsusu di mana g(x) = −1.
Turunan fungsi eksponensial dan logaritmik
suntingperhatikan bahwa persamaan di atas adalah benar untuk semua c, tetapi turunan bagi c < 0 menghasilkan bilangan kompleks.
persamaan di atas adalah benar untuk semua c, tetapi turunan bagi c < 0 menghasilkan bilangan kompleks.
Turunan logaritmik
suntingTurunan logaritmik adalah cara lain untuk menyatakan kaidah diferensiasi logaritma suatu fungsi (menggunakan kaidah rantai):
- wherever f is positive.
Turunan fungsi trigonometri
suntingAdalah lazim untuk mendefinisikan lebih lanjut suatu fungsi tangen inversi dengan dua argumen, . Nilainya terletak dalam rentang dan mencerminkan kuadran dari titik . Untuk kuadran pertama dan keempat (yaitu ) maka . Turunan parsialnya adalah
, and |
Turunan fungsi hiperbolik
suntingTurunan fungsi-fungsi khusus
sunting
|
|
Turunan integral
suntingMisalkan dibutuhkan untuk menghitung turunan terhadap x dalam fungsi
di mana fungsi-fungsi dan keduanya kontinu dalam dan dalam wilayah tertentu bidang , termasuk , dan fungsi-fungsi dan keduanya kontinu dan memiliki turunan kontinu untuk . Maka untuk :
Rumus ini merupakan bentuk umum dari kaidah integral Leibniz dan dapat diturunkan menggunakan Teorema fundamental kalkulus.
Turunan ke-n
suntingAda sejumlah kaidah untuk menghitung turunan ke-n suatu fungsi, di mana n adalah sebuah bilangan bulat positif. Di antaranya:
Rumus Faà di Bruno
suntingJika f dan g dapat diturunkan n kali, maka
di mana dan himpunan terdiri dari semua solusi bilangan bulat bukan negatif dari persamaan Diophantine .
Kaidah Leibniz umum
suntingJika f dan g dapat diturunkan n kali, maka
Lihat pula
suntingReferensi
sunting- ^ Calculus (5th edition), F. Ayres, E. Mendelson, Schuam's Outline Series, 2009, ISBN 978-0-07-150861-2.
- ^ Advanced Calculus (3rd edition), R. Wrede, M.R. Spiegel, Schuam's Outline Series, 2010, ISBN 978-0-07-162366-7.
- ^ Complex Variables, M.R. Speigel, S. Lipschutz, J.J. Schiller, D. Spellman, Schaum's Outlines Series, McGraw Hill (USA), 2009, ISBN 978-0-07-161569-3
Sumber dan pustaka tambahan
suntingKaidah-kaidah ini ditulis dalam banyak buku, baik kalkulus elementer maupun lanjutan, dalam matematika murni maupun terapan. Notasi dalam halaman ini (selain pada rujukan-rujukan di atas) dapat dijumpai dalam:
- Mathematical Handbook of Formulas and Tables (3rd edition), S. Lipschutz, M.R. Spiegel, J. Liu, Schuam's Outline Series, 2009, ISBN 978-0-07-154855-7.
- The Cambridge Handbook of Physics Formulas, G. Woan, Cambridge University Press, 2010, ISBN 978-0-521-57507-2.
- Mathematical methods for physics and engineering, K.F. Riley, M.P. Hobson, S.J. Bence, Cambridge University Press, 2010, ISBN 978-0-521-86153-3
- NIST Handbook of Mathematical Functions, F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, Cambridge University Press, 2010, ISBN 978-0-521-19225-5.
Pranala luar
suntingSumber pustaka mengenai Differentiation rules |