Pengguna:Dedhert.Jr/Ruang vektor topologis

Dalam matematika, sebuah ruang vektor topologis (atau disebut ruang topologis linear dan biasanya disingkat TVS atau t.v.s.) merupakan salah satu dari struktur dasar yang diinvestigasi dalam analisis fungsional. Sebuah ruang vektor topologis merupakan sebuah ruang vektor (sebuah struktur aljabar) yang juga merupakan sebuah ruang topologis, ini menyiratkan bahwa operasi ruang vektor menjadi fungsi kontinu. Lebih spesifiknya, ruang topologisnya memiliki sebuah struktur topologis seragam, memungkinkan sebuah gagasan kekonvergenan seragam.

Unsur ruang vektor topologisnya biasanya operator fungsi atau linear bertindak pada ruang vektor topologis, dan topologinya seringkali didefinisikan sehingga menangkap sebuah gagasan khusus mengenai kekonvergenan barisan fungsi.

Ruang Banach, ruang Hilbert, dan ruang Sobolev merupakan contoh yang terkenal.

Kecuali dinyatakan sebaliknya, medan pendasar ruang vektor topologis diasumsikan menjadi baik bilangan kompleks atau bilangan real .

Motivasi sunting

Ruang bernorma sunting

Setiap ruang vektor bernorma memiliki sebuah struktur topologis alami: normanya mengindikasi sebuah metrik dan metriknya mengindukasikan sebuah topologi. Ini adlaha sebuah ruang vektor topologis karena:

  1. Penambahan vektor   sama-sama kontinu terhadap topologi ini. Ini mengikuti secara langsung dari pertidaksamaan segitiga dipatuhi oleh normanya.
  2. Perkalian skalar  , dimana   merupakan medan skalar pendasar  , sama-samna kontinu. Ini mengikuti dari pertidaksamaan segitiga dan kehomogenan dari norma.

Demikian semua ruang Banach dan ruang Hilbert merupakan contoh-contoh ruang vektor topologis.

Ruang takbernorma sunting

Terdapat ruang vektor topologis yang topologi tidak disebabkan oleh sebuah norma, tetapi tetap menarik dalam analisis. Contohnya seperti ruang adalah ruang fungsi holomorfik ranah buka, ruang fungsi terdiferensialkan takhingga, ruang Schwartz, dan ruang fungsi uji dan ruang sebaran padanya. Ini merupakan semua contoh ruang Montel. Sebuah ruang Montel berdimensi takhingga tidak pernah ternormakan. Keberadaan norma untuk ruang vektor topologis yang diberikan dicirikan oleh kriteria kenormalan Kolmogorov.

Sebuah medan topologis merupakan sebuah ruang vektor topologi atas masing-masing submedannya.

Definisi sunting

 
Sebuah keluarga lingkungan asalnya dengan dua sifat di atas menentukan dengan unik sebuah ruang vektor topologis. Sistem lingkungan suatu titik lainnya dalam ruang vektor diperoleh dengan translasi.

Sebuah ruang vektor topologis (TVS)   merupakan sebuah ruang vektor atas medan topologis   (hampir seringkali bilangan real atau kompleks dengan topologi standarnya) yang diberkahi dengan sebuah topologis sehingga penambahan vektor   dan perkalian skalar   adalah fungsi kontinu (dimana ranah fungsi ini diberkahi dengan topologi darab). Seperti sebuah topologi disebut ruang vektor atau sebuah topologi ruang vektor topologis pada  .

Setiap ruang vektor topologis juga merupakan sebuah grup topologis komutatif terhadap penambahan.

Asumsi Hausdorff sunting

Beberapa penulis (yaitu, Walter Rudin) memerlukan topologi pada   menjadi T1, ini kemudian mengikuti bahwa ruangnya adalah Hausdorff, dan bahkan Tychonoff. Sebuah ruang vektor topologis dikatakan menjadi terpisah jika ini merupakan ruang Hausdorff, terpenting, "terpisah" tidak berarti terpisahkan. Struktur aljabar topologis dan linear dapat diikat bersama bahkan lebih erat lagi dengan asumsi tambahan, hal-hal paling umum yang didaftarkan di bawah.

Kategori dan morfisme sunting

Kategori ruang vektor topologis atas diberikan medan topologis   biasanya dilambangkan   atau  . Objeknya adalah ruang vektor topologis atas   dan morfismenya adalah peta linear-  kontinu dari satu objek ke objek lainnya.

Sebuah kehomomorgan ruang vektor topologis atau kehomomorfan topologis[1][2] merupakan sebuah peta linear kontinu   antara ruang vektor topologis sehingga peta terinduksi   merupakan sebuah pemetaan buka ketika  , yang kisaran atau citra dari  , diberikan topologi subruang yang disebab oleh  .

Sebuah pembenaman ruang vektor topologis atau monomorfisme topologis merupakan sebuah kehomomorfan topologis injektif. Dengan jelas, sebuah pembenaman ruang vektor topologis merupakan sebuah peta linear yang juga merupakan sebuah pembenaman topologis.[1]

Sebuah keisomorfan ruang vektor topologis atau sebuah keisomorfan dalam kategori ruang vektor topologis merupakan sebuah kehomomorfan linear bijektif. Dengan jelas, ini merupakan sebuah pembenaman ruang vektor topologis surjektif.[1]

Banyak sifat-sifat ruang vektor topologis yang dipelajari, seperti kecembungan lokal, ketermetrikkan, kelengkapan, dan kenormalan, adalah invarian terhadap keisomorfan ruang vektor topologis.

Sebuah syarat perlu untuk sebuah ruang vektor sunting

Sebuah kumpulan   dari himpunan bagian ruang vektor disebut aditif[3] jika untuk setiap  , terdapat suatu   sehingga  .

Pencirian kekontinuan penambahan di  [3] — Jika   adalah sebuah grup (sebagia semua ruang vektor),   adalah sebuah topologi pada  , dan   diberikan dengan topologi darab, maka peta penambahan   (didefinisikan oleh  ) adalah kontinu di asalnya dari   jika dan hanya jika himpunan lingkungan dari asalnya di   adalah aditif. Pernyataan ini tetap benar jika kata "lingkungan" diganti oleh "lingkungan buka."

Semua syarat di atas akibatnya sebuah keperluan untuk sebuah topologi untuk membentuk sebuah ruang vektor.

Mendefinisikan topologi menggunakan lingkungan dari asalnya sunting

Karena setiap ruang vektor adalah invarian translasi (yaitu untuk semua  , peta   didefinisikan oleh   merupakan sebuah homeomorfisme), untuk mendefinisikan sebuah topologi vektor, ini mencukupi untuk mendefinisikan sebuah basis lingkungan (atau subbasis) untuknya di asal tersebut.

Teorema[4] (Tapis lingkungan dari asalnya) — Andaikan bahwa   adalah ruang vektor real atau kompleks. Jika   adalah sebuah kumpulan aditif takkosong dari himpunan bagian berimbang dan penyerap  , maka   adalah sebuah basis lingkungan di   untuk sebuah topologi vektor pada  . Yakni, asumsinya adalah bahwa   adalah sebuah basis tapis yang memenuhi syarat-syarat berikut:

  1. Setiap   adalah berimbang dan penyerap,
  2.   adalah aditif: Untuk setiap   terdapat   sehingga  ,

Jika   memenuhi dua syarat di atas tetapi bukan sebuah basis tapis maka ini akan membentuk sebuah subbasis lingkungan di   (daripada sebuah basis lingkungan) untuk sebuah topologi vektor pada  .

Umumnya, himpunan semua himpunan bagian berimbang dan penyerap mengenai sebuah ruang vektor tidak memenuhi syarat teorema ini dan tidak membentuk sebuah basis lingkungan di asalnya untuk suatu vektor topologi.[3]

Mendefinisikan topologi menggunakan untai sunting

Misalkan   menjadi sebuah ruang vektor dan misalkan   menjadi sebuah barisan himpunan bagian  . Setiap himpunan dalam barisan   disebut sebuah buhul dari   dan untuk setiap indeks  ,   disebut buhul ke-  dari  . Himpunan   disebut awal dari  . Barisan   adalah:[5][6][7]

  • Sumatif jika   untuk setiap indeks  
  • Berimbang (masing-masing, penyerap, tertutup, [note 1]cembung, buka, simetrik, terlaras, cembung/tercakram mutlak, dst.) jika ini adalah benar untuk setiap  .
  • Untai jika   adalah sumatif, penyerap, dan berimbang.
  • Untai topologis atau sebuah untai lingkungan dalam sebuah ruang vektor topologis   jika   adalah sebuah untai dan setiap buhlnya adalah sebuah lingkungan asalnya di  .

Jika   adalah sebuah cakram penyerap dalam sebuah ruang vektor   maka barisannya didefinisikan oleh   membentuk sebuah untai diawali dengan  . Ini disebut untai alami dari  .[5] Selain itu, jika sebuah ruang vektor   memiliki dimensi tercacahkan maka setiap untai berisi sebuah untai cembung mutlak.

Barisan sumatif himpunan khususnya memiliki sifat yang baik bahwa ini mendefinisikan fungsi subaditif bernilai real kontinu taknegatif. Fungsi-fungsi ini dapat kemudian digunakan untuk membuktikan banyak sifat-sifat dasar ruang vektor topologis.

Teorema (Fungsi bernilai-  disebabkan oleh sebuah untai) — Misalkan   menjadui sebuah kumpulan himpunan bagian ruang vektor sehingga   dan   untuk semua   Untuk semua   misalkan

 

Mendefinisikan   oleh   if   dan jika tidak, misalkan

 

Maka   adalah subaditif (berarti   untuk semua  ) dan   pada  , jadi khususnya  . Jika semua   merupakan himpunan simetrik, maka   dan jika semua   adalah berimbang, maka   untuk semua skalar   sehingga   dan semua   Jika   adalah sebuah ruang vektor topologis dan jika semua   adalah lingkungan dari asalnya, maka   adalah kontinu, dimana jika sebagai tambahan   is Hausdorff and   membentuk sebuau basis lingkungan berimbang dari asalnya di  , maka   adalah sebuah metrik menentukan topologi vektor pada  .

Sebuah bukti dari teorema di atas diberikan dalam artikel pada ruang vektor topologis termetrikkan.

Jika   dan   adalah dua kumpulan himpunan bagian ruang vektor   dan jika   adalah sebuah skalar, maka oleh definisi:[5]

  •   berisi  :   jika dan hanya jika   untuk setiap indeks  .
  • Himpunan buhul:  .
  • Kernel:  .
  • Kelipatan skalar:  .
  • Jumlah:  .
  • Irisan:  .

Jika   adalah sebuah barisan kumpulan himpunan bagian  , maka   dikatakan menjadi berarah (ke bawah) terhadap inklusi atau berarah sederhana jika   tidak kosong dan untuk semua  , terdapat   sehingga   dan   (dikatakan dengan berbeda, jika dan hanya jika   adalah sebuah pratapis terhadap kurungan   yang didefinisikan di atas).

Notasi: Misalkan   menjadi himpunan semua buhul mengenai semua untai di  .

Mendefinisikan topologi vektor menggunakan kumpulan untai khususnya berguna untuk mendefinisikan kelas ruang vektor topologis yang tidak memerlukan cembung lokal.

Theorem[8] (Topology induced by strings) — If   is a topological vector space then there exists a set  [proof 1] of neighborhood strings in   that is directed downward and such that the set of all knots of all strings in   is a neighborhood basis at the origin for   Such a collection of strings is said to be   fundamental.

Conversely, if   is a vector space and if   is a collection of strings in   that is directed downward, then the set   of all knots of all strings in   forms a neighborhood basis at the origin for a vector topology on   In this case, this topology is denoted by   and it is called the topology generated by  .

If   is the set of all topological strings in a TVS   then  [8] A Hausdorff TVS is metrizable if and only if its topology can be induced by a single topological string.[9]

Topological structure sunting

A vector space is an abelian group with respect to the operation of addition, and in a topological vector space the inverse operation is always continuous (since it is the same as multiplication by −1). Hence, every topological vector space is an abelian topological group. Every TVS is completely regular but a TVS need not be normal.[10]

Let   be a topological vector space. Given a subspace  , the quotient space   with the usual quotient topology is a Hausdorff topological vector space if and only if   is closed.[note 2] This permits the following construction: given a topological vector space   (that is probably not Hausdorff), form the quotient space   where   is the closure of  .   is then a Hausdorff topological vector space that can be studied instead of  .

Invariance of vector topologies sunting

One of the most used properties of vector topologies is that every vector topology is translation invariant:

for all  , the map   defined by   is a homeomorphism, but if   then it is not linear and so not a TVS-isomorphism.

Scalar multiplication by a non-zero scalar is a TVS-isomorphism. This means that if   then the linear map   defined by   is a homeomorphism. Using   produces the negation map   defined by  , which is consequently a linear homeomorphism and thus a TVS-isomorphism.

If   and any subset  , then  [4] and moreover, if   then   is a neighborhood (resp. open neighborhood, closed neighborhood) of   in   if and only if the same is true of   at the origin.

Local notions sunting

A subset   of a vector space   is said to be

  • absorbing (in  ): if for every  , there exists a real   such that   for any scalar   satisfying  .
  • balanced or circled: if   for every scalar  .
  • convex: if   for every real  .
  • a disk or absolutely convex: if   is convex and balanced.
  • symmetric: if  , or equivalently, if  .

Every neighborhood of 0 is an absorbing set and contains an open balanced neighborhood of  [4] so every topological vector space has a local base of absorbing and balanced sets. The origin even has a neighborhood basis consisting of closed balanced neighborhoods of 0; if the space is locally convex then it also has a neighborhood basis consisting of closed convex balanced neighborhoods of 0.

Bounded subsets

A subset   of a topological vector space   is bounded[11] if for every neighborhood   of the origin, then   when   is sufficiently large.

The definition of boundedness can be weakened a bit;   is bounded if and only if every countable subset of it is bounded. A set is bounded if and only if each of its subsequences is a bounded set.[12] Also,   is bounded if and only if for every balanced neighborhood   of 0, there exists   such that  . Moreover, when   is locally convex, the boundedness can be characterized by seminorms: the subset   is bounded if and only if every continuous seminorm   is bounded on  .

Every totally bounded set is bounded.[12] If   is a vector subspace of a TVS  , then a subset of   is bounded in   if and only if it is bounded in  .[12]

Metrizability sunting

Birkhoff–Kakutani theorem — If   is a topological vector space then the following three conditions are equivalent:[13][note 3]

  1. The origin   is closed in  , and there is a countable basis of neighborhoods for 0 in  .
  2.   is metrizable (as a topological space).
  3. There is a translation-invariant metric on   that induces on   the topology  , which is the given topology on  .
  4.   is a metrizable topological vector space.[note 4]

By the Birkhoff–Kakutani theorem, it follows that there is an equivalent metric that is translation-invariant.

A TVS is pseudometrizable if and only if it has a countable neighborhood basis at the origin, or equivalent, if and only if its topology is generated by an F-seminorm. A TVS is metrizable if and only if it is Hausdorff and pseudometrizable.

More strongly: a topological vector space is said to be normable if its topology can be induced by a norm. A topological vector space is normable if and only if it is Hausdorff and has a convex bounded neighborhood of  .[14]

Let   be a non-discrete locally compact topological field, for example the real or complex numbers. A Hausdorff topological vector space over   is locally compact if and only if it is finite-dimensional, that is, isomorphic to   for some natural number  .

Completeness and uniform structure sunting

The canonical uniformity[15] on a TVS   is the unique translation-invariant uniformity that induces the topology   on  .

Every TVS is assumed to be endowed with this canonical uniformity, which makes all TVSs into uniform spaces. This allows one to [butuh klarifikasi] about related notions such as completeness, uniform convergence, Cauchy nets, and uniform continuity. etc., which are always assumed to be with respect to this uniformity (unless indicated other). This implies that every Hausdorff topological vector space is Tychonoff.[16] A subset of a TVS is compact if and only if it is complete and totally bounded (for Hausdorff TVSs, a set being totally bounded is equivalent to it being precompact). But if the TVS is not Hausdorff then there exist compact subsets that are not closed. However, the closure of a compact subset of a non-Hausdorff TVS is again compact (so compact subsets are relatively compact).

With respect to this uniformity, a net (or sequence)   is Cauchy if and only if for every neighborhood   of  , there exists some index   such that   whenever   and  .

Every Cauchy sequence is bounded, although Cauchy nets and Cauchy filters may not be bounded. A topological vector space where every Cauchy sequence converges is called sequentially complete; in general, it may not be complete (in the sense that all Cauchy filters converge).

The vector space operation of addition is uniformly continuous and an open map. Scalar multiplication is Cauchy continuous but in general, it is almost never uniformly continuous. Because of this, every topological vector space can be completed and is thus a dense linear subspace of a complete topological vector space.

  • Every TVS has a completion and every Hausdorff TVS has a Hausdorff completion.[4] Every TVS (even those that are Hausdorff and/or complete) has infinitely many non-isomorphic non-Hausdorff completions.
  • A compact subset of a TVS (not necessarily Hausdorff) is complete.[17] A complete subset of a Hausdorff TVS is closed.[17]
  • If   is a complete subset of a TVS then any subset of   that is closed in   is complete.[17]
  • A Cauchy sequence in a Hausdorff TVS   is not necessarily relatively compact (that is, its closure in   is not necessarily compact).
  • If a Cauchy filter in a TVS has an accumulation point   then it converges to  .
  • If a series   converges[note 5] in a TVS   then   in  .[18]

Examples sunting

Finest and coarsest vector topology sunting

Let   be a real or complex vector space.

Trivial topology

The trivial topology or indiscrete topology   is always a TVS topology on any vector space   and it is the coarsest TVS topology possible. An important consequence of this is that the intersection of any collection of TVS topologies on   always contains a TVS topology. Any vector space (including those that are infinite dimensional) endowed with the trivial topology is a compact (and thus locally compact) complete pseudometrizable seminormable locally convex topological vector space. It is Hausdorff if and only if  .

Finest vector topology

There exists a TVS topology   on   that is finer than every other TVS-topology on   (that is, any TVS-topology on   is necessarily a subset of  ).[19][20] Every linear map from  } into another TVS is necessarily continuous. If   has an uncountable Hamel basis then   is not locally convex and not metrizable.[20]

Product vector spaces sunting

A Cartesian product of a family of topological vector spaces, when endowed with the product topology, is a topological vector space. Consider for instance the set   of all functions   where   carries its usual Euclidean topology. This set   is a real vector space (where addition and scalar multiplication are defined pointwise, as usual) that can be identified with (and indeed, is often defined to be) the Cartesian product  , which carries the natural product topology. With this product topology,   becomes a topological vector space whose topology is called the topology of pointwise convergence on  . The reason for this name is the following: if   is a sequence (or more generally, a net) of elements in   and if   then   converges to   in   if and only if for every real number  ,   converges to   in  . This TVS is complete, Hausdorff, and locally convex but not metrizable and consequently not normable; indeed, every neighborhood of the origin in the product topology contains lines (i.e. 1-dimensional vector subspaces, which are subsets of the form   with  ).

Finite-dimensional spaces sunting

Let   denote   or   and endow   with its usual Hausdorff normed Euclidean topology. Let   be a vector space over   of finite dimension   and so that   is vector space isomorphic to   (explicitly, this means that there exists a linear isomorphism between the vector spaces   and  ). This finite-dimensional vector space   always has a unique Hausdorff vector topology, which makes it TVS-isomorphic to  , where   is endowed with the usual Euclidean topology (which is the same as the product topology). This Hausdorff vector topology is also the (unique) finest vector topology on  .   has a unique vector topology if and only if  . If   then although   does not have a unique vector topology, it does have a unique Hausdorff vector topology.

  • If   then   has exactly one vector topology: the trivial topology, which in this case (and only in this case) is Hausdorff. The trivial topology on a vector space is Hausdorff if and only if the vector space has dimension  .
  • If   then   has two vector topologies: the usual Euclidean topology and the (non-Hausdorff) trivial topology.
    • Since the field   is itself a 1-dimensional topological vector space over   and since it plays an important role in the definition of topological vector spaces, this dichotomy plays an important role in the definition of an absorbing set and has consequences that reverberate throughout functional analysis.
Proof outline

The proof of this dichotomy is straightforward so only an outline with the important observations is given. As usual,   is assumed have the (normed) Euclidean topology. Let   be a 1-dimensional vector space over  . Observe that if   is a ball centered at 0 and if   is a subset containing an "unbounded sequence" then  , where an "unbounded sequence" means a sequence of the form   where   and   is unbounded in normed space  . Any vector topology on   will be translation invariant and invariant under non-zero scalar multiplication, and for every  , the map   given by   is a continuous linear bijection. In particular, for any such  ,   so every subset of   can be written as   for some unique subset   And if this vector topology on   has a neighborhood of 0 that is properly contained in  , then the continuity of scalar multiplication   at the origin forces the existence of an open neighborhood of the origin in   that does not contain any "unbounded sequence". From this, one deduces that if   doesn't carry the trivial topology and if  , then for any ball   center at 0 in  ,   contains an open neighborhood of the origin in   so that   is thus a linear homeomorphism. ∎

  • If   then   has infinitely many distinct vector topologies:
    • Some of these topologies are now described: Every linear functional   on  , which is vector space isomorphic to  , induces a seminorm   defined by   where  . Every seminorm induces a (pseudometrizable locally convex) vector topology on   and seminorms with distinct kernels induce distinct topologies so that in particular, seminorms on   that are induced by linear functionals with distinct kernel will induces distinct vector topologies on  .
    • However, while there are infinitely many vector topologies on   when  , there are, up to TVS-isomorphism only   vector topologies on  . For instance, if   then the vector topologies on   consist of the trivial topology, the Hausdorff Euclidean topology, and then the infinitely many remaining non-trivial non-Euclidean vector topologies on   are all TVS-isomorphic to one another.

Non-vector topologies sunting

Discrete and cofinite topologies

If   is a non-trivial vector space (i.e. of non-zero dimension) then the discrete topology on   (which is always metrizable) is not a TVS topology because despite making addition and negation continuous (which makes it into a topological group under addition), it fails to make scalar multiplication continuous. The cofinite topology on   (where a subset is open if and only if its complement is finite) is also not a TVS topology on  .

Linear maps sunting

A linear operator between two topological vector spaces which is continuous at one point is continuous on the whole domain. Moreover, a linear operator   is continuous if   is bounded (as defined below) for some neighborhood   of the origin.

A hyperplane on a topological vector space   is either dense or closed. A linear functional   on a topological vector space   has either dense or closed kernel. Moreover,   is continuous if and only if its kernel is closed.

Types sunting

Depending on the application additional constraints are usually enforced on the topological structure of the space. In fact, several principal results in functional analysis fail to hold in general for topological vector spaces: the closed graph theorem, the open mapping theorem, and the fact that the dual space of the space separates points in the space.

Below are some common topological vector spaces, roughly ordered by their niceness.

  • F-spaces are complete topological vector spaces with a translation-invariant metric. These include   spaces for all  .
  • Locally convex topological vector spaces: here each point has a local base consisting of convex sets. By a technique known as Minkowski functionals it can be shown that a space is locally convex if and only if its topology can be defined by a family of seminorms. Local convexity is the minimum requirement for "geometrical" arguments like the Hahn–Banach theorem. The   spaces are locally convex (in fact, Banach spaces) for all  , but not for  .
  • Barrelled spaces: locally convex spaces where the Banach–Steinhaus theorem holds.
  • Bornological space: a locally convex space where the continuous linear operators to any locally convex space are exactly the bounded linear operators.
  • Stereotype space: a locally convex space satisfying a variant of reflexivity condition, where the dual space is endowed with the topology of uniform convergence on totally bounded sets.
  • Montel space: a barrelled space where every closed and bounded set is compact
  • Fréchet spaces: these are complete locally convex spaces where the topology comes from a translation-invariant metric, or equivalently: from a countable family of seminorms. Many interesting spaces of functions fall into this class. A locally convex F-space is a Fréchet space.
  • LF-spaces are limits of Fréchet spaces. ILH spaces are inverse limits of Hilbert spaces.
  • Nuclear spaces: these are locally convex spaces with the property that every bounded map from the nuclear space to an arbitrary Banach space is a nuclear operator.
  • Normed spaces and seminormed spaces: locally convex spaces where the topology can be described by a single norm or seminorm. In normed spaces a linear operator is continuous if and only if it is bounded.
  • Banach spaces: Complete normed vector spaces. Most of functional analysis is formulated for Banach spaces.
  • Reflexive Banach spaces: Banach spaces naturally isomorphic to their double dual (see below), which ensures that some geometrical arguments can be carried out. An important example which is not reflexive is  , whose dual is   but is strictly contained in the dual of  .
  • Hilbert spaces: these have an inner product; even though these spaces may be infinite-dimensional, most geometrical reasoning familiar from finite dimensions can be carried out in them. These include   spaces.
  • Euclidean spaces:   or   with the topology induced by the standard inner product. As pointed out in the preceding section, for a given finite  , there is only one  -dimensional topological vector space, up to isomorphism. It follows from this that any finite-dimensional subspace of a TVS is closed. A characterization of finite dimensionality is that a Hausdorff TVS is locally compact if and only if it is finite-dimensional (therefore isomorphic to some Euclidean space).

Dual space sunting

Every topological vector space has a continuous dual space—the set   of all continuous linear functionals, that is, continuous linear maps from the space into the base field   A topology on the dual can be defined to be the coarsest topology such that the dual pairing each point evaluation   is continuous. This turns the dual into a locally convex topological vector space. This topology is called the weak-* topology. This may not be the only natural topology on the dual space; for instance, the dual of a normed space has a natural norm defined on it. However, it is very important in applications because of its compactness properties (see Banach–Alaoglu theorem). Caution: Whenever   is a not-normable locally convex space, then the pairing map   is never continuous, no matter which vector space topology one chooses on  

Properties sunting

For any   of a TVS  , the convex (resp. balanced, disked, closed convex, closed balanced, closed disked) hull of   is the smallest subset of   that has this property and contains  .

The closure (resp. interior, convex hull, balanced hull, disked hull) of a set   is sometimes denoted by   (resp.  ,  ,  ,  ).

Neighborhoods and open sets sunting

Properties of neighborhoods and open sets
  • The open convex subsets of a TVS   (not necessarily Hausdorff or locally convex) are exactly those that are of the form   for some   and some positive continuous sublinear functional   on  .[21]
  • If   and   is an open subset of   then   is an open set in  .[4]
  • If   has non-empty interior then   is a neighborhood of the origin.[4]
  • If   is an absorbing disk in a TVS   and if   is the Minkowski functional of   then[22]
     
    • It was not assumed that   had any topological properties nor that   was continuous (which happens if and only if   is a neighborhood of 0).
  • Every TVS is connected[4] and locally connected.[23] Any connected open subset of a TVS is arcwise connected.
  • Let   and   be two vector topologies on  . Then   if and only if whenever a net   in   converges 0 in   then   in  .[24]
  • Let   be a neighborhood basis of the origin in  , let  , and let  . Then   if and only if there exists a net   in   (indexed by  ) such that   in  .[25][note 6]
Interior
  • If   has non-empty interior then   and  .
  • If   and   has non-empty interior then  .
  • If   is a disk in   that has non-empty interior then 0 belongs to the interior of  .[26]
    • However, a closed balanced subset of   with non-empty interior may fail to contain 0 in its interior.[26]
  • If   is a balanced subset of   with non-empty interior then   is balanced; in particular, if the interior of a balanced set contains the origin then   is balanced.[4][note 7]
  • If   belongs to the interior of a convex set   and  , then the half-open line segment   if   and   if  .[27] If   is a balanced neighborhood of   in   then by considering intersections of the form   (which are convex symmetric neighborhoods of   in the real TVS  ) it follows that:
    •  , where  .
    • if   and   then  ,  , and if   then  .
  • If   is convex and  , then  .[28]

Non-Hausdorff spaces and the closure of the origin sunting

  •   is Hausdorff if and only if   is closed in  .
  •   so every neighborhood of the origin contains the closure of  .
  •   is a vector subspace of   and its subspace topology is the trivial topology (which makes   compact).
  • Every subset of   is compact and thus complete (see footnote for a proof).[proof 2] In particular, if   is not Hausdorff then there exist compact complete subsets that are not closed.[29]
  •   for every subset  .[proof 3]
    • So if   is open or closed in   then   (so   is a "tube" with vertical side  ).
    • The quotient map   is a closed map onto a Hausdorff TVS.[30]
  • A subset   of a TVS   is totally bounded if and only if   is totally bounded,[31] if and only if   is totally bounded,[32][33] if and only if its image under the canonical quotient map   is totally bounded.[31]
  • If   is compact, then   and this set is compact. Thus the closure of a compact set is compact[note 8] (i.e. all compact sets are relatively compact).[34]
  • A vector subspace of a TVS is bounded if and only if it is contained in the closure of  .[12]
  • If   is a vector subspace of a TVS   then   is Hausdorff if and only if   is closed in  .
  • Every vector subspace of   that is an algebraic complement of   is a topological complement of  . Thus if   is an algebraic complement of   in   then the addition map  , defined by   is a TVS-isomorphism, where   is Hausdorff and   has the indiscrete topology.[35] Moreover, if   is a Hausdorff completion of   then   is a completion of  .[31]

Closed and compact sets sunting

Compact and totally bounded sets
  • A subset of a TVS is compact if and only if it is complete and totally bounded.[29]
    • Thus, in a complete TVS, a closed and totally bounded subset is compact.[29]
  • A subset   of a TVS   is totally bounded if and only if   is totally bounded,[32][33] if and only if its image under the canonical quotient map   is totally bounded.[31]
  • Every relatively compact set is totally bounded.[29] The closure of a totally bounded set is totally bounded.[29]
  • The image of a totally bounded set under a uniformly continuous map (e.g. a continuous linear map) is totally bounded.[29]
  • If   is a compact subset of a TVS   and   is an open subset of   containing  , then there exists a neighborhood   of 0 such that  .[36]
  • If   is a subset of a TVS   such that every sequence in   has a cluster point in   then   is totally bounded.[31]
Closure and closed set
  • If   and   is a scalar then  ; if   is Hausdorff,  , or   then equality holds:  .
    • In particular, every non-zero scalar multiple of a closed set is closed.
  • If   and   then   is convex.[37]
  • If   then   and  .[4] Thus if   is closed then so is  .[37]
  • If   and if   is a set of scalars such that neither   nor   contain zero then  .[37]
  • The closure of a vector subspace of a TVS is a vector subspace.
  • If   then   where   is any neighborhood basis at the origin for  .[38]
    • However,   and it's possible for this containment to be proper[39] (e.g. if   and   is the rational numbers).
    • It follows that   for every neighborhood   of the origin in  .[40]
  • If   is a real TVS and  , then   (observe that the left hand side is independent of the topology on  ); if   is a convex neighborhood of the origin then equality holds.
  • The sum of a compact set and a closed set is closed. However, the sum of two closed subsets may fail to be closed[4] (see this footnote[note 9] for examples).
  • If   is a vector subspace of   and   is a closed neighborhood of the origin in   such that   is closed in   then   is closed in  .[36]
  • Every finite dimensional vector subspace of a Hausdorff TVS is closed. The sum of a closed vector subspace and a finite-dimensional vector subspace is closed.[4]
Closed hulls
  • In a locally convex space, convex hulls of bounded sets are bounded. This is not true for TVSs in general.[12]
  • The closed convex hull of a set is equal to the closure of the convex hull of that set; that is, equal to  .[4]
  • The closed balanced hull of a set is equal to the closure of the balanced hull of that set; that is, equal to  .[4]
  • The closed disked hull of a set is equal to the closure of the disked hull of that set; that is, equal to  .[4]
  • If   and the closed convex hull of one of the sets   or   is compact then  .[4]
  • If   each have a closed convex hull that is compact (that is,   and   are compact) then  .
Hulls and compactness
  • In a general TVS, the closed convex hull of a compact set may fail to be compact.
  • The balanced hull of a compact (resp. totally bounded) set has that same property.[4]
  • The convex hull of a finite union of compact convex sets is again compact and convex.[4]

Other properties sunting

Meager, nowhere dense, and Baire
  • A disk in a TVS is not nowhere dense if and only if its closure is a neighborhood of the origin.[41]
  • A vector subspace of a TVS that is closed but not open is nowhere dense.[41]
  • Suppose   is a TVS that does not carry the indiscrete topology. Then   is a Baire space if and only if   has no balanced absorbing nowhere dense subset.[41]
  • A TVS   is a Baire space if and only if   is nonmeager, which happens if and only if there does not exist a nowhere dense set   such that  .[41]
Important algebraic facts and common misconceptions
  • If   then  ; if   is convex then equality holds.
    • For an example where equality does not hold, let   be non-zero and set  ;   also works.
  • A subset   is convex if and only if   for all positive real   and  [42]
  • The disked hull of a set   is equal to the convex hull of the balanced hull of  ; that is, equal to  . However, in general  
  • If   and   is a scalar then   and   and  [4]
  • If   are convex non-empty disjoint sets and   then   or  
  • In any non-trivial vector space   there exist two disjoint non-empty convex subsets whose union is  
Other properties
  • Every TVS topology can be generated by a family of F-seminorms.[43]

Properties preserved by set operators sunting

  • The balanced hull of a compact (resp. totally bounded, open) set has that same property.[4]
  • The (Minkowski) sum of two compact (resp. bounded, balanced, convex) sets has that same property.[4] But the sum of two closed sets need not be closed.
  • The convex hull of a balanced (resp. open) set is balanced (resp. open). However, the convex hull of a closed set need not be closed.[4] And the convex hull of a bounded set need not be bounded.

The following table, the color of each cell indicates whether or not a given property of subsets of   (indicated by the column name e.g. "convex") is preserved under the set operator (indicated by the row's name e.g. "closure"). If in every TVS, a property is preserved under the indicated set operator then that cell will be colored green; otherwise, it will be colored red.

So for instance, since the union of two absorbing sets is again absorbing, the cell in row " " and column "Absorbing" is colored green. But since the arbitrary intersection of absorbing sets need not be absorbing, the cell in row "Arbitrary intersections (of at least 1 set)" and column "Absorbing" is colored red. If a cell is not colored then that information has yet to be filled in.

See also sunting

  • Banach spaceLua error in Modul:WikidataDescription at line 7: bad argument #1 to 'sub' (string expected, got nil).
  • Hilbert spaceLua error in Modul:WikidataDescription at line 7: bad argument #1 to 'sub' (string expected, got nil).
  • Normed spaceLua error in Modul:WikidataDescription at line 7: bad argument #1 to 'sub' (string expected, got nil).
  • Locally convex topological vector spaceLua error in Modul:WikidataDescription at line 7: bad argument #1 to 'sub' (string expected, got nil).
  • Topological groupLua error in Modul:WikidataDescription at line 7: bad argument #1 to 'sub' (string expected, got nil).
  • Vector spaceLua error in Modul:WikidataDescription at line 7: bad argument #1 to 'sub' (string expected, got nil).

Notes sunting

  1. ^ Sifat-sifat topologis tentu saja juga memerlukannya menjadi sebuah ruang vektor topologis.
  2. ^ In particular,   is Hausdorff if and only if the set   is closed (i.e.,   is a T1 space).
  3. ^ In fact, this is true for topological group, since the proof does not use the scalar multiplications.
  4. ^ Also called a metric linear space, which means that it is a real or complex vector space together with a translation-invariant metric for which addition and scalar multiplication are continuous.
  5. ^ A series   is said to converge in a TVS   if the sequence of partial sums converges.
  6. ^ This shows, in particular, that it will often suffice to consider nets indexed by a neighborhood basis of the origin rather than nets on arbitrary directed sets.
  7. ^ If the interior of a balanced set is non-empty but does not contain the origin (such sets exists even in   and  ) then the interior of this set can not be a balanced set.
  8. ^ In general topology, the closure of a compact subset of a non-Hausdorff space may fail to be compact (e.g. the particular point topology on an infinite set). This result shows that this does not happen in non-Hausdorff TVSs.   is compact because it is the image of the compact set   under the continuous addition map  . Recall also that the sum of a compact set (i.e.  ) and a closed set is closed so   is closed in  .
  9. ^ In the  , the sum of the  -axis and the graph of  , which is the complement of the  -axis, is open in   In  , the sum of   and   is a countable dense subset of   so not closed in  .
  1. ^ This condition is satisfied if   denotes the set of all topological strings in  
  2. ^ Since   has the trivial topology, so does each of its subsets, which makes them all compact. It is known that a subset of any uniform space is compact if and only if it is complete and totally bounded.
  3. ^ If   then  . Because  , if   is closed then equality holds. Clearly, the complement of any set   satisfying the equality   must also satisfy this equality.

Citations sunting

  1. ^ a b c Köthe 1969, hlm. 91.
  2. ^ Schaefer & Wolff 1999, hlm. 74–78.
  3. ^ a b c Wilansky 2013, hlm. 40-47.
  4. ^ a b c d e f g h i j k l m n o p q r s t u Narici & Beckenstein 2011, hlm. 67-113.
  5. ^ a b c Adasch, Ernst & Keim 1978, hlm. mis. 42.
  6. ^ Schechter 1996, hlm. mis. 42.
  7. ^ Narici & Beckenstein 2011, hlm. mis. 42.
  8. ^ a b Adasch, Ernst & Keim 1978, hlm. 5-9.
  9. ^ Adasch, Ernst & Keim 1978, hlm. 10-15.
  10. ^ Wilansky 2013, hlm. 53.
  11. ^ Rudin 1991, hlm. 8.
  12. ^ a b c d e Narici & Beckenstein 2011, hlm. 155-176.
  13. ^ Köthe 1983, section 15.11.
  14. ^ Hazewinkel, Michiel, ed. (2001) [1994], "Topological vector space", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4 
  15. ^ Schaefer & Wolff 1999, hlm. 12-19.
  16. ^ Schaefer & Wolff 1999, hlm. 16.
  17. ^ a b c Narici & Beckenstein 2011, hlm. 115-154.
  18. ^ Swartz 1992, hlm. 27-29.
  19. ^ "A quick application of the closed graph theorem". What's new (dalam bahasa Inggris). 2016-04-22. Diakses tanggal 2020-10-07. 
  20. ^ a b Narici & Beckenstein 2011, hlm. 111.
  21. ^ Narici & Beckenstein 2011, hlm. 177-220.
  22. ^ Narici & Beckenstein 2011, hlm. 119-120.
  23. ^ Schaefer & Wolff 1999, hlm. 35.
  24. ^ Wilansky 2013, hlm. 43.
  25. ^ Wilansky 2013, hlm. 42.
  26. ^ a b Narici & Beckenstein 2011, hlm. 108.
  27. ^ Schaefer & Wolff 1999, hlm. 38.
  28. ^ Jarchow 1981, hlm. 101-104.
  29. ^ a b c d e f Narici & Beckenstein 2011, hlm. 47-66.
  30. ^ Narici & Beckenstein 2011, hlm. 107-112.
  31. ^ a b c d e Schaefer & Wolff 1999, hlm. 12-35.
  32. ^ a b Schaefer & Wolff 1999, hlm. 25.
  33. ^ a b Jarchow 1981, hlm. 56-73.
  34. ^ Narici & Beckenstein 2011, hlm. 156.
  35. ^ Wilansky 2013, hlm. 63.
  36. ^ a b Narici & Beckenstein 2011, hlm. 19-45.
  37. ^ a b c Wilansky 2013, hlm. 43-44.
  38. ^ Narici & Beckenstein 2011, hlm. 80.
  39. ^ Narici & Beckenstein 2011, hlm. 108-109.
  40. ^ Jarchow 1981, hlm. 30-32.
  41. ^ a b c d e Narici & Beckenstein 2011, hlm. 371-423.
  42. ^ Rudin 1991, hlm. 38.
  43. ^ Swartz 1992, hlm. 35.

References sunting

External links sunting

Templat:Functional Analysis Templat:TopologicalVectorSpaces